1.【引言】
近年来,大型语言模型(LLMs)在自然语言处理任务中取得了显著进展,但其对专业或新兴主题的处理能力仍受限于训练数据的有限性和静态预训练知识。检索增强生成(RAG)方法通过整合外部知识检索来提高LLMs的事实准确性和适应性,然而,现有的RAG流程复杂且难以评估各组件的贡献。此外,GraphRAG系统在平衡检索准确性、计算效率和适应多样查询结构方面面临挑战。为了解决这些问题,本文提出了ROGRAG框架,通过多阶段检索机制和增量知识图谱构建,提升了GraphRAG系统的鲁棒性和准确性,旨在为知识密集型应用提供更有效的解决方案。

论文基本信息
论文题目:ROGRAG: A Robustly Optimized GraphRAG Framework
论文作者:Zhefan Wang, Huanjun Kong, Jie Ying, Wanli Ouyang,

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



