【ACL 2025】大语言模型 + 知识图谱双加持!即插即用,SeedBench 准确率暴涨 15% 刷新 AI SOTA!

1.【引言】

近年来,大型语言模型(LLMs)在自然语言处理任务中取得了显著进展,但其对专业或新兴主题的处理能力仍受限于训练数据的有限性和静态预训练知识。检索增强生成(RAG)方法通过整合外部知识检索来提高LLMs的事实准确性和适应性,然而,现有的RAG流程复杂且难以评估各组件的贡献。此外,GraphRAG系统在平衡检索准确性、计算效率和适应多样查询结构方面面临挑战。为了解决这些问题,本文提出了ROGRAG框架,通过多阶段检索机制和增量知识图谱构建,提升了GraphRAG系统的鲁棒性和准确性,旨在为知识密集型应用提供更有效的解决方案。

在这里插入图片描述

论文基本信息

论文题目:ROGRAG: A Robustly Optimized GraphRAG Framework

论文作者:Zhefan Wang, Huanjun Kong, Jie Ying, Wanli Ouyang,

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值