Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l)
there are such that A[i] + B[j] + C[k] + D[l]
is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Example:
Input: A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2] Output: 2 Explanation: The two tuples are: 1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0 2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
和之前的3sum有所不同,这个题的每个数在不同数组里,所以直接用4个for循环即可。
把ABCD分成两组计算,计算速度会快一些。
class Solution:
def fourSumCount(self, A: List[int], B: List[int], C: List[int], D: List[int]) -> int:
dic = {}
for a in A:
for b in B :
dic[a+b]=dic.get(a+b,0)+1
count = 0
for c in C :
for d in D :
if -c-d in dic:
count += dic[-c-d]
return count
用collections可以写的更简单一些。
class Solution:
def fourSumCount(self, A: List[int], B: List[int], C: List[int], D: List[int]) -> int:
sumab=collections.Counter(a+b for a in A for b in B)
return sum(sumab[-c-d] for c in C for d in D)