1139: 出栈序列统计

1139: 出栈序列统计

Description

栈是常用的一种数据结构,有n令元素在栈顶端一侧等待进栈,栈顶端另一侧是出栈序列。你已经知道栈的操作有两•种:push和pop,前者是将一个元素进栈,后者是将栈顶元素弹出。现在要使用这两种操作,由一个操作序列可以得到一系列的输出序列。请你编程求出对于给定的n,计算并输出由操作数序列1,2,…,n,经过一系列操作可能得到的输出序列总数

Input

一个整数n(1 <= n <= 15)

Output

一个整数,即可能输出序列的总数目。

Sample Input

3

Sample Output

5

数学题,卡特兰数。C(2n,n)=(2n)!/[(2n-n)!n!]

最多步骤时出栈入栈各 n 次,则其总步骤有2 * n次。

而一般 出栈次数<=入栈次数 。

这样我们可以令1表示进栈,0表示出栈,则可转化为求一个2n位、含n个1、n个0的二进制数,满足从左往右扫描到任意一位时,经过的0数不多于1数。显然含n个1、n个0的2n位二进制数共有(2n , n)个。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<utility>
#include<string>
#include<vector>
#include<algorithm>
#include<queue>
#include<cstdlib>
#include<cmath>
#include<stack>

using namespace std;

int main()
{
#ifndef ONLINE_JUDGE
	freopen("1.txt","r",stdin);
#endif
<span style="white-space:pre">	</span>	int i , flag[20] , n ;
	scanf("%d",&n) ;
	flag[0] = 1 ;
	flag[1] = 1 ;
	for(i = 2 ; i<=n ; ++i)
	{
		flag[i]=flag[i-1]*(4*i-2)/(i+1);
	}
	printf("%d\n",flag[n]);

	return 0;
}



展开阅读全文

没有更多推荐了,返回首页