Panasonic Programming Contest 2025(AtCoder Beginner Contest 406)D-E 题解

D. Garbage Removal

题意

有一个 H × W H \times W H×W 的网格, ( i , j ) (i,j) (i,j) 表示第 i i i 行第 j j j 列的格子。在这个网格里有 N N N 个垃圾,第 i i i 个垃圾在 ( X i , Y i ) (X_i,Y_i) (Xi,Yi)

Q Q Q 次查询,分为以下两种类型:

  • 1 x 输出第 x x x 行垃圾的总数,并移除这行所有垃圾;
  • 2 y 输出第 y y y 列垃圾的总数,并移除这列所有垃圾。

思路

由于删除一行垃圾时,对应列的垃圾数也会减少。所以考虑用 set \text{set} set 维护每行、每列的状态。

定义 set<int> X[](大小为 H H H), X i X_i Xi 表示第 i i i 行有垃圾的所有列号的集合;和 set<int> Y[](大小为 W W W), Y i Y_i Yi 表示第 i i i 列有垃圾的所有行号的集合。

初始化将所有垃圾都加入对应集合,注意 X X X Y Y Y 都要加。

若为操作 1 1 1,输出集合 X x X_x Xx 的大小,并且,对于其中每一个数 i i i(列号),删除对应集合 Y i Y_i Yi 中的 x x x 元素,并清空集合 X x X_x Xx

若为操作 2 2 2,输出集合 Y y Y_y Yy 的大小,并且,对于其中每一个数 i i i(行号),删除对应集合 X i X_i Xi 中的 y y y 元素,并清空集合 Y y Y_y Yy

时间复杂度: O ( Q + N ) O(Q+N) O(Q+N)

C++ 代码

#include<bits/stdc++.h>
#define sz(v) (int)v.size()
using namespace std;
const int maxn=200005;
int n,m,k;
set<int> x[maxn];
set<int> y[maxn];
int main(){
	cin>>n>>m>>k;
	for(int i=1;i<=k;i++){
		int u,v;
		cin>>u>>v;
		x[u].insert(v);
		y[v].insert(u);
	}
	int Q;
	cin>>Q;
	while(Q--){
		int opt,p;
		cin>>opt>>p;
		if(opt==1){
			cout<<sz(x[p])<<endl;
			for(int i:x[p]){
				y[i].erase(p);
			}
			x[p].clear();
		}else{
			cout<<sz(y[p])<<endl;
			for(int i:y[p]){
				x[i].erase(p);
			}
			y[p].clear();
		}
	}
	return 0;
}

E. Popcount Sum 3

题意

多测,共 T T T 组数据。

给你整数 N N N K K K,找到所有满足以下条件的数 x x x 的和:

  • popcount ( x ) = K \text{popcount}(x)=K popcount(x)=K 且 $ x\le N$,其中 popcount(x) \text{popcount(x)} popcount(x) 表示 x x x 在二进制形式中 1 1 1 的数量

思路

提供一个不是 DP \text{DP} DP 的做法。为了方便表示,设 998244353 = M 998244353=M 998244353=M

对于 N N N 二进制形式中每个是 1 1 1 的位数 d d d(从后往前数,最右边的是第 1 1 1 位),把它之前(不包括自己)的所有是 1 1 1 的位都默认设成 1 1 1,设之前有 c n t cnt cnt 位是 1 1 1(可以预处理 出前面是 1 1 1 的数位表示的数的总和,即 s u m = ∑ i = [ x ] 在二进制形式下的位数 d + 1 2 d − 1 sum=\sum_{i=[x]在二进制形式下的位数}^{d+1} 2^{d-1} sum=i=[x]在二进制形式下的位数d+12d1),在之后(不包括自己)的共 d − 1 d-1 d1 位中任意放入 K − c n t K-cnt Kcnt 1 1 1,很明显,方案数为 C d − 1 K − c n t \text{C}_{d-1}^{K-cnt} Cd1Kcnt。我们把这些方案全部列出来:

下图展示了 k − c n t = 3 , d − 1 = 5 k-cnt=3,d-1=5 kcnt=3,d1=5 的情况

它是 C d − 1 K − c n t \text{C}_{d-1}^{K-cnt} Cd1Kcnt 个长度为 K − c n t K-cnt Kcnt 的序列,每个数在 1 ∼ d − 1 1 \sim d-1 1d1 之间,可以证明, 1 ∼ d − 1 1 \sim d-1 1d1 之间的每一个数(每一位)出现的次数都一样,即每个数字(每一位)出现了 t = C d − 1 K − c n t × ( K − c n t ) d − 1 t=\displaystyle \frac{\text{C}_{d-1}^{K-cnt} \times (K-cnt)}{d-1} t=d1Cd1Kcnt×(Kcnt) 次:
i i i 位表示的数为 2 i 2^i 2i,则本次答案增加 Δ = ∑ i = 1 d − 2 2 i × t + C d − 1 K − c n t × s u m = C d − 1 K − c n t × ( K − c n t ) d − 1 × ( 2 d − 1 − 1 ) + C d − 1 K − c n t × s u m \Delta=\sum_{i=1}^{d-2}2^i\times t+\text{C}_{d-1}^{K-cnt}\times sum =\displaystyle \frac{\text{C}_{d-1}^{K-cnt} \times (K-cnt)}{d-1}\times (2^{d-1}-1)+\text{C}_{d-1}^{K-cnt}\times sum Δ=i=1d22i×t+Cd1Kcnt×sum=d1Cd1Kcnt×(Kcnt)×(2d11)+Cd1Kcnt×sum

如果 c n t = K cnt=K cnt=K 就把答案加上 s u m sum sum 并跳出循环。

注意点:

  • 因为先取模再除法可能会出错,所以我们把除法换成乘法逆元,即 1 d − 1   m o d   M = ( d − 1 ) M − 2   m o d   M \frac{1}{d-1} \bmod M=(d-1)^{M-2}\bmod M d11modM=(d1)M2modM(可以用费马小定理证明)。

  • 同理, C n k \text{C}_n^k Cnk 也需要预处理,预处理出 f a c t i = i !   m o d   M fact_i=i! \bmod M facti=i!modM r e v i = 1 i !   m o d   M rev_i=\frac{1}{i!}\bmod M revi=i!1modM C n k = f a c t n × r e v k × r e v n − k \text{C}_n^k=fact_n\times rev_k\times rev_{n-k} Cnk=factn×revk×revnk

  • 记得开 long long \text{long long} long long,计算幂要用快速幂,不然超时。

C++ 代码

#include<bits/stdc++.h>
#define int long long
#define mpr make_pair
#define pb push_back
#define sz(v) (int)v.size()
using namespace std;
const int MOD=998244353;
int n,k;
int fact[64],rev[64];
int pw(int a,int b){
	int res=1;
	while(b){
		if(b&1) res=res*a%MOD;
		a=a*a%MOD;
		b>>=1;
	}
	return res;
}
int C(int n,int k){
	if(n<k) return 0;
	return fact[n]*rev[k]%MOD*rev[n-k]%MOD;
}
void solve(){
	cin>>n>>k;
	vector<bool> v;
	while(n!=0){
		v.pb(n&1);
		n>>=1;
	}
	reverse(v.begin(),v.end());
	int ans=0,cnt=0,sum=0;
	for(int i=0;i<sz(v);i++){
		if(v[i]==0) continue;
		int dig=sz(v)-i;
		ans=(ans+(pw(2,dig-1)-1)*(C(dig-1,k-cnt)*(k-cnt)%MOD*pw(dig-1,MOD-2)%MOD)%MOD)%MOD;
		ans=(ans+C(dig-1,k-cnt)*sum)%MOD;
		cnt++;
		sum+=pw(2,dig-1);
		if(cnt==k){
			ans=(ans+sum)%MOD;
			break;
		}
	}
	cout<<ans<<endl;
}
signed main(){
	fact[1]=fact[0]=rev[0]=1;
	for(int i=2;i<=61;i++){
		fact[i]=fact[i-1]*i%MOD;
	}
	rev[61]=pw(fact[61],MOD-2);
	for(int i=60;i>=1;i--){
		rev[i]=rev[i+1]*(i+1)%MOD;
	}
	int T;
	cin>>T;
	while(T--){
		solve();
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值