【人工智能】支持向量机(SVM)算法分析数据集

支持向量机算法分析数据集

1.介绍算法思路

支持向量机(support vector machines, SVM)和感知器算法一样都是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机。
算法的主要思路就是寻找最佳超平面,当从二维扩展到多维空间中时,将两类不同的数据完全正确地划分开就成了一个超平面。为了使这个超平面更具鲁棒性,我们需要去找最佳超平面,这个平面在三维空间内距离需要划分的两个类别的最近的样本最远。

2.程序

import numpy as np
from sklearn import svm
from sklearn.model_selection import train_test_split
import matplotlib as mpl
from matplotlib import colors
import matplotlib.pyplot as plt
from sklearn import datasets

def iris_type(s):
    it = {b'Iris-setosa': 0, b'Iris-versicolor': 1, b'Iris-virginica': 2}
    return it[s]

def penguins_type(s):
    it = {b'Torgersen': 0, b'Dream': 1, b'Biscoe': 2}
    return it[s]

def show_accuracy(a, b, tip):
    acc = a.ravel() == b.ravel()
    print(tip + '正确率:', np.mean(acc))

path = 'iris.data'
data = np.loadtxt(path, dtype=float, delimiter=',', converters={4: iris_type})
# path = 'penguins.data'
# data = np.loadtxt(path, dtype=float, delimiter=',', converters={4: penguins_type})

x, y = np.split(data, (4,), axis=1)
# x取样本X的所有行和前两列,进行特征向量训练
x = x[:, :2]

# train_test_split(train_data,train_target,test_size=数字, random_state=0)
# train_data:所要划分的样本特征集
# train_target:所要划分的样本结果
# test_size:样本占比,如果是整数的话就是样本的数量
# random_state:是随机数的种子
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.6, test_size=0.4, random_state=1)

# 训练svm分类器
# kernel='linear'时,为线性核,C越大分类效果越好,但有可能会过拟合(defaul C=1)。
# kernel='rbf'时(default),为高斯核,gamma值越小,分类界面越连续
# gamma值越大,分类界面越“散”,分类效果越好,但有可能会过拟合。
# ecision_function_shape='ovr'时,为one v rest
# 即一个类别与其他类别进行划分,
# decision_function_shape='ovo'时,为one v one
# 即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。
clf = svm.SVC(kernel='rbf', gamma=2)
clf.fit(x_train, y_train.ravel())

# 计算svc分类器的准确率
# print(clf.score(x_train, y_train))  # 精度
y_hat = clf.predict(x_train)
show_accuracy(y_hat, y_train, '训练集')
# print(clf.score(x_test, y_test))
y_hat = clf.predict(x_test) 
show_accuracy(y_hat, y_test, '测试集')

x1_min, x1_max = x[:, 0].min(), x[:, 0].max()  # 第0列的范围
x2_min, x2_max = x[:, 1].min(), x[:, 1].max()  # 第1列的范围
x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]  # 生成网格采样点
grid_test = np.stack((x1.flat, x2.flat), axis=1)  # 测试点
grid_hat = clf.predict(grid_test)   # 预测分类值
grid_hat = grid_hat.reshape(x1.shape)

# 指定默认字体
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

# 绘制
cm_light = colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = colors.ListedColormap(['g', 'r', 'b'])
plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)
plt.scatter(x[:, 0], x[:, 1], c=np.squeeze(y), edgecolors='k', s=50, cmap=cm_light)  # 样本
plt.scatter(x_test[:, 0], x_test[:, 1], s=5, facecolors='red', zorder=10)  # 圈中测试集样本
plt.xlabel(u'花萼长度', fontsize=13)
plt.ylabel(u'花萼宽度', fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'鸢尾花支持向量机', fontsize=15)
plt.show()

3.分析

通过支持向量机算法对鸢尾花数据集和帕尔默企鹅数据集进行数据集分析,使用了数据集中三组不同类型的数据去测试在不同的核函数和对应的函数参数下的数据,我们得到了上面八组实验结果,对于实验结果一,我们使用的是线性可分程度一般的鸢尾花花萼的长宽,支持向量机算法能够较好的区分不同种类的数据,相比较与实验结果一和实验结果二,可以得出gamma值越小,分类界面越连续,gamma值越大,分类界面越“散”,分类效果越好。相较于实验结果一和实验结果三,我们使用了更加线性可分程度更高的鸢尾花的花瓣长和宽,而出来的测试结果也符合预期,训练集和测试集的准确率都达到了96%,高于实验结果一的80%,说明对于有较高线性可分的数据集使用支持向量机算法得到的结果更加可靠。而对于实验结果一、实验结果四和实验结果五,我们采用了线性核函数,可以发现线性核函数的C越大,分类效果越好。

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿显Hx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值