R语言基本命令及包的安装

软件的安装:

rrstudio

简单的加减:

> 1 + 1
[1] 2
> 2 ^ 10
[1] 1024

取范围-1010

> -10 : 10
 [1] -10  -9  -8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6
[18]   7   8   9  10

 

赋值:

> x <- -10 : 10
> x

 [1] -10  -9  -8  -7  -6  -5  -4  -3  -2  -1   0   1   2   3   4   5   6
[18]   7   8   9  10

> x ^ 2
 [1] 100  81  64  49  36  25  16   9   4   1   0   1   4   9  16  25  36
[18]  49  64  81 100

> y <- x ^ 2
> y

 [1] 100  81  64  49  36  25  16   9   4   1   0   1   4   9  16  25  36
[18]  49  64  81 100

 

中位数:

> quantile(1 : 10)
   0%   25%   50%   75%  100%

 

逻辑操作:

 1.00  3.25  5.50  7.75 10.00
> 2 > 3
[1] FALSE
> 2 = 3
错误于2 = 3: (do_set)赋值公式左手无效
> 2 == 3
[1] FALSE
> 2 < 3
[1] TRUE

画散点图:

> x <- -10:10
> y <- x ^ 2
> plot(x,y)

> plot(x,y,type = "b")
> plot(x,y,type = "l")
> plot(x,y,type = "o")

分别是下面三张图:

R包在生物信息学、统计分析以及系统发育与进化研究中有很多有用的功能:

  • 基础功能包(Base)
    • base:包含R的基本功能,所有R用户都会用到。
  • 统计学包(Stats)
    • stats:R的基础统计包,包含各种统计功能,如回归分析、t检验、方差分析等。
  • 线性及非线性混合效应模型(Linear and Non-linear Mixed Effects Models)
    • nlme:提供用于拟合线性和非线性混合效应模型的函数。
  • 绘图(Graphics)
    • graphics:R的基础绘图包,用于基本的2D图形绘制。
    • ggplot2:用于创建复杂和定制化的图形,基于“语法图形学”的理念。
    • lattice:用于创建多面板图形,特别适合探索高维数据的模式。
  • 栅格图(Raster Graphics)
    • raster:处理栅格数据的包,常用于空间数据的分析和绘图。
  • 系统发育与进化分析
    • ape:用于系统发育分析的包,支持进化树的构建、操作和可视化。
    • phytools:用于分析系统发育数据,包括树形比较和进化模型分析。
    • apTreeshape:用于分析和比较系统发育树的形状。
  • DNA序列分析(DNA Sequence Analysis)
    • seqinr:提供DNA序列的读取、分析和操作功能。
    • ade4:用于多元统计分析,适用于生态学和进化生物学数据分析。
  • 生态学数据分析(Ecological Data Analysis)
    • vegan:用于生态学数据分析,尤其是群落生态学和物种多样性研究。
    • ecodist:提供生态学数据距离矩阵和多维尺度分析等功能。
  • 其他生态学相关包
    • ecospat:进行物种分布模型分析。
    • biomod2:进行生态模型建模的包,常用于物种分布预测。
  • 聚类分析(Cluster Analysis)
    • cluster:R中用于进行聚类分析的基本包,支持各种聚类方法如K-means、层次聚类等。
    • factoextra:用于聚类分析的结果可视化,帮助解释聚类的结构。
  • 广义加性模型(Generalized Additive Models)
    • mgcv:用于拟合广义加性模型(GAM)和广义加性混合模型(GAMMs),广泛应用于非线性回归建模。
  • 多变量分解(Multivariate Decomposition)
    • mvpart:用于多变量分解,常用于分类和回归分析中的决策树模型。
  • 线性及非线性混合效应模型(Linear and Non-linear Mixed Effects Models)
    • nlme:用于拟合线性和非线性混合效应模型,支持复杂的随机效应和固定效应建模。
  • 系统发育比较(Phylogenetic Comparison)
    • ouch:用于进行基于进化树的系统发育比较分析,尤其适用于比较性状进化等问题。
  • 差异表达基因筛选(Differential Gene Expression)
    • limma:用于差异表达基因分析,适用于微阵列数据或RNA-Seq数据分析。
    • DESeq2:RNA-Seq数据分析中常用的包,提供了对RNA-Seq数据的差异表达分析功能。
  • RNA-Seq数据分析(RNA-Seq Analysis)
    • edgeR:RNA-Seq数据分析,特别是差异表达分析,类似于DESeq2。
    • DESeq2:同上,是RNA-Seq数据分析的主流包之一。
  • 字符串操作(String Manipulation)
    • stringr:一个强大的字符串操作包,提供了很多简洁的函数,用于文本数据处理和分析。
  • 高级迭代循环(Advanced Iteration Loops)
    • purrr:函数式编程包,提供了更多灵活的迭代功能,替代了基础R中的apply、lapply等函数。
    • data.table:高效的循环和数据处理包,尤其在大数据集下效率较高。
  • 数据操作(Data Manipulation)
    • plyr:用于数据操作和处理,虽然dplyr包功能更强大且更常用,但plyr仍然是很多旧版代码的依赖。

包的本地下载:

 

最下面这个task view就是根据这些所有的r包的能做的一些事情,它的一个特点。进行一个排序。

例如:

贝叶斯下面就是通过贝叶斯模型来进行统计分析的这些包

安装后不要解压缩,直接用r打开

安装方法(两种):

1:

选择镜像,后选择包,就会自动安装,依赖包也会自己安装

2:

install.packages("包名")

关于Bioconductor:

Bioconductor 是一个独立于 CRAN(R 的主要包仓库)的 R 包仓库,专门用于存储与生物信息学相关的 R 包。它主要面向高通量测序(high throughput sequencing)、基因组学数据分析等领域,提供了大量处理生物数据的工具。像 limma(用于差异表达分析)、DESeq2(RNA-Seq 数据分析)、edgeR(RNA-Seq 数据分析)、以及用于处理单核苷酸多态性(SNP)、拷贝数变异(CNV)分析等方面的包,都可以在 Bioconductor 上找到。

Bioconductor 是一个开源项目,所有的包都是用 R 语言编写的,旨在为生物信息学领域的研究人员提供强大且灵活的数据分析工具。这些包涵盖了从数据预处理、分析、可视化到结果解读等各个方面,支持的功能包括基因表达分析、基因组数据分析、基因组序列比对等。

如果你对高通量数据分析有需求,Bioconductor 提供的包几乎是必不可少的资源,尤其是在处理大规模基因组数据时。

下载:

命令行安装:

if (!require("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("limma")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值