文章目录
图
图的意义
当我们需要表示多对多的关系时, 这里我们就用到了图
基本介绍
图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。 结点也可以称为顶点。
1)顶点(vertex)
2)边(edge)
3)路径
4)无向图
5)有向图
6)带权图
无向图
无向图: 顶点之间的连接没有方向,比如A-B,即可以是 A-> B 也可以 B->A .
路径,比如从D -> C的路径有
1、D->B->C
2、D->A->B->C
有向图
有向图: 顶点之间的连接有方向,比如A-B,只能是 A-> B 不能是 B->A
带权图
带权图:这种边带权值的图也叫网.
表示方式
1、二维数组表示(邻接矩阵)
2、链表表示(邻接表)
领接矩阵
邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1…n个点。
领接表
1、邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失.
2、邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成
图的遍历
1、深度优先遍历
2、广度优先遍历
深度优先遍历(Depth First Search)
1、深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点, 可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
2、这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
3、深度优先搜索是一个递归的过程
思路
1、访问初始结点v,并标记结点v为已访问。
2、查找结点v的第一个邻接结点w。
3、若w存在,则继续执行4,如果w不存在,则回到第1步,将从v的下一个结点继续。
4、若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。
5、查找结点v的w邻接结点的下一个邻接结点,转到步骤3。
过程
1、假如从A开始访问
2、A之后访问未访问的点,点B未被访问,所以访问B(这里从构造按添加的顺序ABCDE,如果ACBDE,就从C开始)
3、又以B为起点去访问未访问的点,B去访问A,但A已经访问,所以访问C
4、以C为起点去访问未访问的点,与C关联的点之前都被访问过,回退到B点
5、B开始访问D,D被访问
6、D没有可以访问的点,回退B
7、B开始访问E,E被访问,回退B
8、B没有可访问的,回退A
9、A没有可以访问的点,结束
10、至此,所有的点都被访问,访问顺序A-B-C-D-E
广度优先遍历(Broad First Search)
类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点
思路
1)访问初始结点v并标记结点v为已访问。
2)结点v入队列
3)当队列非空时,继续执行,否则算法结束。
4)出队列,取得队头结点u。
5)查找结点u的第一个邻接结点w。
6)若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:
6.1 若结点w尚未被访问,则访问结点w并标记为已访问。
6.2 结点w入队列
6.3 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。
过程
存在一个队列
1、先访问A,将A加入队列:[A]
2、访问A,A离开队列,之后访问B、C,B、C加入队列:[B、C]
3、在从B开始访问,访问D、E,所以B离开队列,D、E加入队列:[C、D、E]
4、在从C开始访问,C没有可访问的:[D、E]
5、在从D开始访问,D没有可访问的:[E]
6、在从E开始访问,E没有可访问的:[]
7、结束
代码
import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
public class Graph {
private ArrayList<String> vertexList; // 点的集合
private int[][] edges; // 领接矩阵
private int numOfEdges; // 边的数量
private boolean[] isVisited;
public static void main(String[] args) {
int n = 5;
String vertexs[] = {"A", "B", "C", "D", "E"};
Graph graph = new Graph(n);
for (String value : vertexs) {
graph.insertVertex(value);
}
// A-B A-C B-C B-D B-E
graph.insertEdge(0, 1, 1);
graph.insertEdge(0, 2, 1);
graph.insertEdge(1, 2, 1);
graph.insertEdge(1, 3, 1);
graph.insertEdge(1, 4, 1);
graph.showGraph();
System.out.println("DFS");
graph.dfs();
System.out.println();
System.out.println("BFS");
graph.bfs();
}
public Graph(int n) {
// 初始化
edges = new int[n][n];
vertexList = new ArrayList<>(n);
numOfEdges = 0;
isVisited = new boolean[5];
}
// 得到第一个领接点的下标
public int getFirstNeighbor(int index) {
for (int j = 0; j < vertexList.size(); j++) {
if (edges[index][j] > 0) {
return j;
}
}
return -1;
}
// 根据前一个领接结点的下标获取下一个领接结点
public int getNextNeighbor(int v1, int v2) {
for (int j = v2 + 1; j < vertexList.size(); j++) {
if (edges[v1][j] > 0) {
return j;
}
}
return -1;
}
// DFS
public void dfs(boolean[] isVisited, int i) {
System.out.print(getValueByIndex(i) + "->");
isVisited[i] = true;
int w = getFirstNeighbor(i);
while (w != -1) {
if (!isVisited[w]) {
dfs(isVisited, w);
}
w = getNextNeighbor(i, w);
}
}
// BFS
public void bfs(boolean[] isVisited, int i) {
int u;
int w;
// 队列
LinkedList<Object> queue = new LinkedList<>();
System.out.print(getValueByIndex(i) + "->");
isVisited[i] = true;
queue.addLast(i);
while (!queue.isEmpty()) {
u = (Integer) queue.removeFirst();
w = getFirstNeighbor(u);
while (w != -1) {
if (!isVisited[w]) {
System.out.print(getValueByIndex(w) + "->");
isVisited[w] = true;
queue.addLast(w);
}
w = getNextNeighbor(u, w);
}
}
}
// BFS重载
public void bfs() {
isVisited = new boolean[5];
for (int i = 0; i < getNumOfVertex(); i++) {
if (!isVisited[i]) {
bfs(isVisited, i);
}
}
}
// DFS重载
public void dfs() {
isVisited = new boolean[5];
for (int i = 0; i < getNumOfVertex(); i++) {
if (!isVisited[i]) {
dfs(isVisited, i);
}
}
}
// 返回边的数目
public int getNumOfEdges() {
return numOfEdges;
}
// 返回结点的个数
public int getNumOfVertex() {
return vertexList.size();
}
// 返回下标为i的结点
public String getValueByIndex(int i) {
return vertexList.get(i);
}
// 返回权重
public int getWeight(int v1, int v2) {
return edges[v1][v2];
}
// 返回矩阵
public void showGraph() {
for (int[] link : edges) {
System.out.println(Arrays.toString(link));
}
}
// 插入结点
public void insertVertex(String vertex) {
vertexList.add(vertex);
}
// 添加边
public void insertEdge(int v1, int v2, int weight) {
edges[v1][v2] = weight;
edges[v2][v1] = weight;
numOfEdges++;
}
}