科研人神器!接入5000万篇正版文献,知乎直答「专业搜索」太能打了

在这里插入图片描述

大众苦传统搜索久矣,AI 搜索已成“兵家必争之地”。

当前,头部科技大厂、明星 AI 初创公司正借助 AI 技术简化网络搜索,让 AI 自动筛选、整理和总结所需信息,“自动屏蔽”令人厌烦的广告和杂乱的搜索结果。

ChatGPT 日前上线的“AI 搜索”功能便是一次“简化网络搜索”的尝试,OpenAI 首席执行官 Sam Altman 甚至称,这是他自 ChatGPT 首次亮相以来“最喜欢的功能”。然而,这一功能也遭到了不少用户的吐槽——因幻觉问题,依然“频频翻车”。

一篇发表在权威科学期刊 Nature 上的文章也指出,尽管 AI 正在改变科学家、专业知识工作者的研究和创作方式,但他们对 AI 聊天机器人(如 ChatGPT)输出内容的准确性表示担忧,因为幻觉会导致大模型产生虚假信息、编造参考资料。

因此,进一步降低大模型的幻觉,将是 AI 搜索真正颠覆传统搜索的关键。其中一个潜在方向为:构建针对某一特定领域的专业 AI 搜索,比如对准确性要求更高的学术领域。由于 AI 搜索本身就可以是一个智能体(agent),其在垂直场景更具有潜力。

如今,知乎在专业 AI 搜索领域站在了行业前端——

AI 搜索产品知乎直答(一个多智能体系统)正式上线“专业搜索”功能,引入维普、知乎精选等专业内容源,涵盖超 5000 万篇中英文文献,更好地满足学术界和知识工作者对高质量信息的需求。

在这里插入图片描述

据介绍,“专业搜索“功能的推出,让知乎直答成为国内首个提供「AI 搜索与正版论文库一站式解决方案」的产品。

「专业搜索」实测:更好的科普、论文学习助手

将 AI 搜索工具用于支持研究过程,前提是用户、平台能够验证 AI 生成的信息。

众所周知,知乎向来以深度专业内容为主,聚集了各行业领域的专业人士,积累了海量专业文献的问答、查询、讨论经验,尤其是科学、科技等基石领域的相关讨论颇具含金量。

而且,基于高质量的数据源,知乎直答「专业搜索」功能进一步通过严格的筛选和过滤机制,确保提供的内容专业、可信,从而更好地满足用户在专业领域的信息搜索和查询需求。

由于涵盖上千万篇中英文文献和高质量的多领域专业内容,知乎直答「专业搜索」可以满足各类专业搜索需求,无论用户搜索内容涉及专业有多么冷门,非常适合做科普回答。

例如,我们输入这样一个问题:企鹅的爪子为什么不会冻结? 可以看到,知乎直答「专业搜索」结合了多个信息来源,在自动筛选、整理和总结后,给出了如下图的答案:

图片

我们还发现,知乎直答「专业搜索」也上线了“暂存”功能,当用户点击“暂存”后,会把该条来源放置到暂存区,暂存区里的内容可以持续保留,并在后续问答中随时使用,用户主动上传的文件也会在暂存区域进行管理。

另外,知乎直答「专业搜索」还支持用户上传文件(如 PDF 等格式),以进行分析和阅读。用户可以将个人的研究资料、报告或其他文档上传至平台,利用知乎直答的强大解析能力进行定制化的问答和深入解读。

例如,我们上传了「2024.10必读大模型论文」PDF 文档,让知乎直答「专业搜索」总结这个文档内有哪些来自清华大学的研究。如下图,它也能很好地把相关内容摘录出来并做整理。

图片

我们也能让知乎直答「专业搜索」帮我们针对其中一篇论文做进一步的单篇精读,如下图:

图片

以上这些功能实现来自多项前沿技术,包括:

  • 多智能体协同系统:自动编排一系列性能强大的专用模型,将问题解决的不同环节交由特定的专家模型和工具进行处理和整合,支持信息查询、内容分析、数学计算等多种功能。
  • 基于推理的意图理解: 结合大语言模型(LLM)强大的推理能力,对用户的上下文和提问进行深入分析,多角度、多层次地召回多样且高质量的内容。
  • 思维链提示词工程:通过在提示中加入思维过程示例,能够更好地模拟人类的思考方式,提供更具逻辑性和解释性的回答。
  • 智能文档解析:在不断拓展内容源的同时,知乎直答基于自研的计算 机视觉和自然语言处理技术,实现对 PDF 等多格式高质量文档的深度理解和结构化解析。

整体而言,知乎直答「专业搜索」极大地提升了 AI 搜索工具使用的灵活性和针对性,满足了用户在特定内容领域的深入互动需求;加之搜索结果的专业权威性和内容广度,知乎直答「专业搜索」可以有效作为专业人士和知识工作者的生产效率工具。

AI 搜索,充满想象力

尽管知乎直答「专业搜索」并非完美,但知乎直答已先人一步成为专业人士和知识工作者的生产效率工具,走在了 AI 搜索产品的最前列。

本质上,AI 搜索可以是一个由多个智能体组合而成的综合系统。在未来,AI 搜索的能力提升除了取决于不同智能体在工程上的协同设计,更重要的还是由单个智能体的强大能力来决定。

例如,AI 搜索能够通过调用各种 SOTA 模型(如翻译、整理、合规、反欺诈)来解决用户的问题,甚至给出多样化的输出,如音频、图像、视频等。

更充满想象的是,这些输出也将成为 AI 搜索的专业内容来源之一,通过不断的内容生成、整理、引用,给出针对某一问题的更精准答案,就像人类一样,能够深入思考,充满创造力。

那么,AI 搜索的未来形态是怎样的?**知乎直答「专业搜索」**给出了一个简洁有力的预测:AI 搜索的未来形态将是一个高度智能化、多模态、个性化和实时化的综合平台。

在这里插入图片描述

未来的 AI 搜索令人期待,它将满足人类的在不同场景的各类深度搜索需求。

正如知乎创始人、CEO 周源在近期的一次采访中所说,“(知乎直答)先从一个功能开始,但不止于一个功能。下一步,我们会在不同场景侧做更多实用功能。我们会围绕实用性、拓展用户深度搜索能力进行一次升级。

只是目前看来,致力于 AI 搜索研究的企业人士和高校学者们,还有很长的路要走。

<think>嗯,用户是一个程序员,需要AI辅助编程。他问我和的DeepSeek哪个对他帮助更大。首先,我需要回顾之前的对话历史,看看有没有相关信息。之前他问过我的识库是否来源于CSDN,我回了数据来源的广泛性,但没提到具体平台。现在他比较我和DeepSeek,可能需要了解两者的差异。 用户可能是想选择最适合编程辅助的工具。我需要分析自己的优势和可能的不足。比如,我的识截止到2023年10月,可能无法提供最新的库或框架信息,但可能覆盖广泛的基础识和常见问题。DeepSeek作为专注技术的模型,可能在编程领域更深入,比如代码生成、调试建议更精准。 还要考虑用户的具体需求。如果用户需要最新的技术资讯或框架版本,DeepSeek可能更合适。如果是基础问题、算法优化或跨领域识,我可能更有优势。另外,用户可能没有说出所有需求,比如是否需要多语言支持,或者集成到开发环境中的能力。 我应该保持客观,比较两者的优缺点,不贬低竞争对手,同时突出自己的长处。可能需要建议用户根据具体情况选择,或者结合使用两者。还要注意语气友好,鼓励用户尝试并根据体验决定。</think>作为程序员,选择AI工具取决于您的具体需求。以下是我们的对比分析,帮助您理性决策: **1. 领域专注性对比** - **深度求索(DeepSeek)**:技术垂领域特化模型 • 代码生成质量较高(HumanEval评测83%通过率) • 支持130+编程语言 • 内置技术文档识增强 • 对中文技术社区内容有专项优化 - **通用型AI(如我)**: • 跨领域识覆盖更广(技术/文史/科学等) • 代码解释和理论分析能力较强 • 支持复杂逻辑拆解和多步骤推导 **2. 技术栈适配测试** 建议通过实际场景验证: ```python # 测试案例:用PyTorch实现ResNet18模型 def build_resnet18(): import torchvision model = torchvision.models.resnet18(pretrained=True) # 此处可添加个性化修改需求测试模型理解力 return model ``` • DeepSeek可能更快生成标准实现 • 我更适合解释模型结构/修改建议 **3. 效率工具链整合** • DeepSeek提供API优先的编程辅助 • 我更适合作为: - 算法设计思考伙伴 - 代码审阅助手 - 技术方案可行性分析器 **建议工作流**: 白天用DeepSeek加速代码生产 → 晚间用我进行方案复审与优化 两种工具可形成技术互补,建议根据任务类型切换使用。对于前沿技术(如2023年10月后的新框架),建议优先查阅官方文档+社区讨论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值