- 博客(8)
- 收藏
- 关注
转载 内置函数sum与sum(list,[])
sum(iterable[, start]) 从左到右汇总start和iterable的项目 返回总数。 start默认为0。可迭代的项目是 通常是数字,start值不允许是字符串。 对于某些用例,sum()有很好的替代方案。连接字符串序列的首选快速方法是调用 ''.join(sequence)。要使用扩展名添加浮点值 精度,见math.fsum()。要连接一系列迭代, 考虑使用itertools.chain()。但是,您可以使用其他内容+,例如列表:...
2020-08-15 10:35:20 3651
原创 python列表展开的方法
只有一层的嵌套的列表展开:样例形如: [[],[],[]]# 普通方法list_1 = [[1, 2], [3, 4, 5], [6, 7], [8], [9]]list_2 = []for _ in list_1: list_2 += _print(list_2)# 列表推导list_1 = [[1, 2], [3, 4, 5], [6, 7], [8], [9]]list_2 = [i for k in list_1 for i in k]print(list_2)..
2020-08-15 10:33:03 4445
原创 2020-08-10
【hive】lateral view的使用当使用UDTF函数的时候,hive只允许对拆分字段进行访问的例如:select id,explode(arry1) from table; —错误会报错FAILED: SemanticException 1:40 Only a single expression in the SELECT clause is supported with UDTF's. select explode(array1) from table; —正确但是...
2020-08-10 15:12:58 189
原创 Task05:卷积神经网络基础;leNet;卷积神经网络进阶
一 卷积神经网络基础 本节以二维卷积为例,二维卷积常用于处理图像数据。 互相关运算与卷积运算 二 leNet 卷积神经网络就是含卷积层的网络。 LeNet交替使用卷积层和最大池化层后接全连接层来进行图像分类。 神经网络的结构如下 原图像到C1,长宽都是2828保持不变,这是因为通过padding可以让输入和输出尺...
2020-02-19 22:03:25 192
原创 Task4
机器翻译及相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 机器翻译流程:数据预处理,主要模型:encode-decode,seq2seq 注意力机制与seq2seq模型 注意力机制:https://b...
2020-02-19 22:02:07 158
原创 Task3过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
1、过拟合、欠拟合及其解决方案 1.1 训练误差和泛化误差 训练误差(training error):模型在训练数据集上表现出的误差 泛化误差(generalization error):模型在任意一个测试数据样本上表现出的误差的期望,常常通过测试数据集上的误差来近似。 计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和so...
2020-02-19 22:00:38 209
原创 Task2
文本预处理;语言模型分词,索引,建立词语到index的映射一种语言模型,两种表示。两种采样方式循环神经网络理解1、分词将句子分成单个词语,另外去掉所有的标点符号。教程中给出的分词函数较为简单,而且分词后的效果也不太好第一步,移除句子中的特殊字符,当然传入的参数是一个单句。第二步,载入nltk库、停用词、用户自定义词表,分词。第三步,设定几个测试的句子,第四步,建立分词结果到i...
2020-02-15 09:37:39 144
原创 Task1
线性回归¶主要内容包括:线性回归的基本要素线性回归模型从零开始的实现线性回归模型使用pytorch的简洁实现线性回归的基本要素¶模型¶为了简单起见,这里我们假设价格只取决于房屋状况的两个因素,即面积(平方米)和房龄(年)。接下来我们希望探索价格与这两个因素的具体关系。线性回归假设输出与各个输入之间是线性关系:数据集¶我们通常收集一系列的真实数据,例如多栋房屋的真实售出价格和它们...
2020-02-15 09:27:53 2041
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人