基于深度学习的车辆车型检测识别系统(YOLOV5)

界面图:

项目简介:

网络:深度学习网络 yoloV5

软件:Pycharm+Anaconda

环境:python=3.8  opencv PyQt5 torch1.9

文件:训练集8000张图片 测试集1000张图片  系统包含所有文件夹  环境文件 UI文件

功能:可以识别6种机动车车型,可以识别单张图片、批量图片与视频,可以摄像头识别,图片识别支持统计检测到的物体数量

项目获取(项目完整文件下载请见参考视频的简介处给出:➷➷➷

系统展示视频

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq3488924189

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值