- 博客(7939)
- 收藏
- 关注
原创 基于YOLOv5/v8/v10的高空抛物检测系统:从数据集构建到UI界面部署
高空抛物被称为"悬在城市上空的痛",不仅严重影响城市环境卫生,更对居民生命财产安全构成巨大威胁。一颗30克的鸡蛋从25楼抛下可致人死亡,从18楼抛下能砸破头骨。传统的人工监控方式存在效率低、易漏报等缺点,因此开发一套自动化的高空抛物检测系统具有重要意义。
2026-02-13 20:09:50
196
原创 基于YOLOv5/v8/v10的车辆逆行检测系统:从数据集构建到UI界面完整实现
随着我国机动车保有量的持续增长,交通违章行为也随之增加。其中,车辆逆行是一种严重的交通违法行为,不仅扰乱正常交通秩序,更极易引发重大交通事故。根据交通部门统计,逆行导致的事故死亡率远高于一般交通事故。
2026-02-13 20:09:19
70
原创 YOLO系列实战指南:构建智能遗留物检测系统(YOLOv5/v8/v10 + UI界面 + 数据集)
遗留物检测本质上是一个多阶段推理过程:检测场景中的人(pedestrian)检测场景中的行李/包裹(baggage)分析行李与人的空间-时间关系判断行李是否长时间无人看管创建yaml# 数据集路径path: ../dataset # 数据集根目录train: images/train # 训练集图片路径val: images/val # 验证集图片路径test: images/test # 测试集图片路径# 类别数nc: 6# 类别名称。
2026-02-13 20:08:49
252
原创 深度学习跌倒检测系统:基于YOLOv5/v8/v10的完整实现与UI界面开发
跌倒是老年人意外伤害的首要原因。据统计,65岁以上老年人每年跌倒发生率约为30%,80岁以上则高达50%。跌倒不仅导致骨折、颅脑损伤等直接伤害,更会造成老年人"恐跌症",严重影响生活质量。
2026-02-13 20:08:18
100
原创 手机使用检测系统:基于YOLOv5/v8/v10的考场/办公区违规行为识别完整方案
随着智能手机的普及,在考场、会议室、保密区域等特定场所,手机的不当使用已成为一个亟待解决的问题。传统的依靠监考人员或监控摄像头人工巡视的方式不仅效率低下,而且容易出现遗漏。基于深度学习的计算机视觉技术,特别是目标检测算法,为我们提供了一种高效、准确的自动化解决方案。
2026-02-13 20:07:40
177
原创 基于YOLOv5/v8/v10的智能宠物检测系统:从数据集构建到UI界面完整实现
随着全球宠物数量的持续增长和智能家居的普及,宠物监测系统已成为智能家居的重要组成部分。据统计,2023年全球智能宠物摄像头市场规模已达15亿美元,预计2028年将突破35亿美元。这些设备不仅需要实时监控宠物状态,还要能够:
2026-02-13 19:44:36
349
原创 车牌检测与识别:从模型训练到UI界面完整实现
车牌检测与识别(License Plate Detection and Recognition, LPDR)是智能交通系统中的核心技术之一。它在停车场管理、交通违章监控、高速公路收费等场景中有着广泛应用。本文将详细介绍如何基于YOLO系列目标检测算法(YOLOv5/YOLOv8/YOLOv10)实现车牌检测,并结合OCR技术完成车牌号码识别,最终构建一个完整的桌面端UI应用。
2026-02-13 19:43:45
142
原创 YOLOv5/v8/v10口罩佩戴检测系统:从数据集构建到UI界面部署全解析
在疫情常态化防控的背景下,公共场所的口罩佩戴规范监测成为一项重要任务。传统人工巡检效率低且存在交叉感染风险,基于深度学习的口罩佩戴检测系统应运而生。本文将手把手教你从零构建一个支持YOLOv5/v8/v10的多版本口罩检测系统,并附带完整的UI界面。
2026-02-13 19:43:06
349
原创 YOLOv5/v8/v10实现安全帽检测:从零构建工地安全监管系统
工地安全监管是计算机视觉在工业领域的重要应用场景。本文详细讲解如何使用YOLOv5、YOLOv8、YOLOv10三个主流目标检测算法实现工人安全帽佩戴检测。文章涵盖数据集构建、模型训练、性能对比、GUI界面开发全流程,并提供完整可运行的Python代码。通过本文,您将掌握从数据标注到模型部署的完整项目开发能力。
2026-02-13 19:42:32
188
原创 保安在岗检测系统:基于YOLOv5/v8/v10的睡岗脱岗识别完整实现
在现代化安防管理中,保安人员的在岗状态直接关系到场所安全。本文详细介绍如何构建一个基于YOLO系列算法的保安在岗检测系统,实现对关键岗位的脱岗、睡岗行为自动识别。系统整合YOLOv5、YOLOv8、YOLOv10三个版本,提供完整的模型训练、评估和图形化界面展示。并提供全部可运行代码,帮助读者从零构建一个实用的计算机视觉安防应用。
2026-02-13 19:41:35
283
原创 基于YOLO的智能违停检测系统:从YOLOv5到YOLOv10的完整实现
随着城市化进程的加快,车辆违停问题日益严重,传统的人工巡查方式效率低下,难以实现全天候监控。基于深度学习的违停检测系统能够自动识别禁停区域的违规停车行为,大大提升了交通管理的智能化水平。
2026-02-13 19:39:24
174
原创 基于YOLOv5/v8/v10的禁烟场所吸烟检测系统:从数据集构建到UI界面部署全解析
button class="btn btn-success" onclick="startDetection()" id="startBtn">开始检测</button>print(f"\n⚡ 推理速度: {speed_results['avg_speed_ms']:.2f} ± {speed_results['std_speed_ms']:.2f} ms")stats = f"检测时间: {datetime.datetime.now().strftime('%H:%M:%S')}\n"
2026-02-13 19:38:37
241
原创 基于YOLOv5/v8/v10的人群密度估计系统:从模型训练到UI界面全栈实战
人群密度估计是智能安防、智慧城市和公共安全领域的关键技术。随着深度学习的发展,目标检测算法在该任务中表现出色。本文将手把手带你构建一个基于YOLO系列(YOLOv5、YOLOv8、YOLOv10)的人群密度估计系统。我们将详细对比这三代算法的核心差异,介绍如何标注和处理人群数据集,并训练一个高精度的人数检测模型。最后,我们将使用PyQt5开发一个图形用户界面,实现图片、视频和实时摄像头的人数统计与拥挤度预警。全文包含完整的代码解析,旨在帮助读者掌握从理论到落地的全流程。
2026-02-13 19:32:40
498
原创 基于YOLOv5/v8/v10的打架斗殴检测系统:从数据集构建到UI界面完整实现
打架斗殴检测是智能视频监控领域的重要应用,能够实时识别异常肢体冲突行为,为公共安全提供智能化预警。本文将详细介绍如何基于YOLOv5、YOLOv8和YOLOv10构建打架斗殴检测系统,涵盖数据集构建、模型训练与对比、性能优化以及PyQt5 UI界面开发。通过完整的代码实现和详细的原理讲解,帮助读者掌握目标检测在行为识别中的应用技术。
2026-02-13 19:31:57
143
原创 区域入侵检测系统:从数据准备到UI界面完整实现(YOLOv5/v8/v10对比)
区域入侵检测是计算机视觉在安防领域的重要应用,旨在实时检测人员或车辆是否闯入预设的禁区。本文将详细介绍如何构建一个完整的区域入侵检测系统,涵盖从数据集制作、YOLOv5/v8/v10模型训练、算法改进到UI界面开发的完整流程。
2026-02-13 19:31:24
317
原创 驾驶员疲劳驾驶预警系统:基于YOLOv5/v8/v10的睡眠监测与闭眼检测完整实现指南
根据世界卫生组织的数据,全球每年约有135万人死于交通事故,其中疲劳驾驶是导致事故的主要原因之一。研究表明,驾驶员在连续驾驶超过4小时后,反应时间会增加50%以上,事故风险显著提高。基于计算机视觉的疲劳驾驶检测系统能够实时监测驾驶员状态,在发现疲劳迹象时及时发出警报,具有重要的社会意义和应用价值。
2026-02-13 19:30:52
214
原创 基于YOLOv5/v8/v10的拥挤场景人头检测系统:从数据集构建到UI界面完整实现
在商场、车站、体育场馆等密集场所,传统的人体检测往往因严重遮挡而失效。人头检测因其遮挡较少、尺度稳定等特点,成为拥挤场景人数统计的更优方案。本项目将实现一个完整的人头检测系统,支持YOLOv5/v8/v10三种主流算法,并提供图形化界面。
2026-02-13 19:30:21
165
原创 基于YOLOv5/v8/v10的火焰烟雾检测系统:从数据集构建到UI界面部署
火灾是危害公共安全的主要灾害之一,早期发现和预警对于减少人员伤亡和财产损失至关重要。本文详细介绍了基于深度学习的火焰与烟雾检测系统,综合对比YOLOv5、YOLOv8和YOLOv10三种主流目标检测算法在火灾检测任务中的表现。文章涵盖数据集构建、模型训练、性能评估以及基于PyQt5的图形界面开发,提供完整的代码实现。实验结果表明,三种YOLO模型在火焰烟雾检测任务中均取得优异性能,其中YOLOv10在检测速度和精度之间达到最佳平衡。本文旨在为火灾预警系统的研究和应用提供技术参考。
2026-02-13 19:29:48
252
原创 车辆检测系统:从YOLOv5到YOLOv10的完整实现
车辆检测是计算机视觉领域的一个重要应用,在智能交通、自动驾驶、安防监控等领域具有广泛的应用前景。本文将详细介绍如何构建一个完整的车辆检测系统,能够识别汽车、卡车、摩托车、自行车四类车辆。我们将使用YOLOv5、YOLOv8和YOLOv10三个版本的YOLO算法进行实现,并提供一个基于PyQt5的图形用户界面。
2026-02-13 19:29:17
432
原创 基于YOLOv5/v8/v10的行人检测系统
行人检测作为计算机视觉领域的经典任务,是自动驾驶、智能安防、人流量统计等应用的核心基础。在自动驾驶场景中,车辆需要在复杂城市道路上实时识别行人轨迹,提前0.1秒的预警就可能避免一场交通事故;在安防监控领域,行人检测系统能够实现24小时不间断的异常行为监控,大大减轻安保人员的工作负担。
2026-02-13 19:28:37
201
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的植物叶片病害识别系统(Python+PySide6界面+训练代码)
YOLO(You Only Look Once)系列作为实时目标检测算法的代表,在精度和速度方面取得了良好平衡,非常适合用于植物叶片病害的实时识别。本博客将详细介绍基于YOLOv5/YOLOv6/YOLOv7/YOLOv8的植物叶片病害识别系统的完整实现,包括数据集准备、模型训练、系统实现和部署。
2026-02-07 12:41:12
93
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的的商品标签识别系统(Python+PySide6界面+训练代码)
随着零售行业的快速发展和智能化转型,商品标签识别在库存管理、自动结账、产品溯源等场景中发挥着越来越重要的作用。本文详细介绍了基于YOLO系列目标检测算法(YOLOv5/YOLOv6/YOLOv7/YOLOv8)的商品标签识别系统,该系统结合Python后端和PySide6图形界面,实现了从数据预处理、模型训练到部署应用的全流程解决方案。文章将深入探讨各版本YOLO算法的原理、系统架构设计、训练策略优化,并提供完整的代码实现和详细的操作指南。实验结果表明,本系统在商品标签识别任务上达到了较高的准确率和实时性能
2026-02-07 12:40:14
195
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的火焰检测系统(Python+PySide6界面+训练代码)
本文详细介绍了一个基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的完整火焰检测系统,涵盖了数据集准备、模型训练、系统实现和部署的全流程。我们使用Python和PySide6开发了一个用户友好的图形界面,提供了完整的训练代码和预测代码。本系统能够实时检测火焰,适用于火灾预警、安防监控等多个应用场景。
2026-02-07 12:39:44
86
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的铁轨缺陷检测系统(Python+PySide6界面+训练代码)
本文详细介绍了基于YOLO系列目标检测算法的铁轨缺陷检测系统的设计与实现。系统采用Python开发,结合PySide6图形界面,提供了从数据预处理、模型训练到实时检测的完整解决方案。文章将深入探讨YOLO算法的原理、系统架构设计、数据集构建方法以及实际应用效果。
2026-02-07 12:39:02
142
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的车型识别与计数系统(深度学习模型+UI界面代码+训练数据集)
本文详细介绍了基于YOLO系列目标检测算法(包括YOLOv5、YOLOv6、YOLOv7和YOLOv8)的车型识别与计数系统的完整实现方案。我们将深入探讨算法原理、数据集准备、模型训练、系统集成以及用户界面开发的全过程,并提供完整的代码实现。该系统能够实时检测视频流或图像中的车辆,识别不同车型(如轿车、卡车、公交车等),并统计车流量,可广泛应用于智能交通管理、停车场监控、高速公路流量统计等场景。
2026-02-07 12:38:10
157
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的钢材表面缺陷检测系统(Python+PySide6界面+训练代码)
钢材表面缺陷检测是钢铁制造行业质量控制的重要环节。传统的人工检测方法存在效率低、主观性强、漏检率高等问题。本文详细介绍了基于YOLO系列深度学习算法(YOLOv5/YOLOv6/YOLOv7/YOLOv8)的钢材表面缺陷自动检测系统的完整开发流程。系统包含数据准备、模型训练、性能评估和可视化界面等模块,采用PySide6开发了友好的图形用户界面。本文提供了完整的代码实现,并详细介绍了NEU-DET钢材表面缺陷数据集的应用。
2026-02-07 12:37:40
134
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的停车位检测系统(Python+PySide6界面+训练代码)
本系统采用PySide6构建用户友好型图形界面,支持YOLOv5、YOLOv6、YOLOv7和YOLOv8等多种主流YOLO算法版本,用户可以根据实际需求选择不同的模型进行训练和推理。系统包含完整的数据预处理、模型训练、性能评估和实时检测功能模块,并提供了详细的训练代码和部署指南。
2026-02-07 12:37:00
214
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的行人车辆检测与计数(Python+PySide6界面+训练代码)
随着城市化进程的加速和智能交通系统的发展,行人车辆检测与计数技术已经成为现代城市管理、交通规划和公共安全领域的关键技术。传统的检测方法主要依赖于传感器、红外设备或人工统计,这些方法不仅成本高昂,而且效率和准确性有限。深度学习技术的兴起,特别是基于卷积神经网络的目标检测算法,为实时、准确的交通目标检测提供了新的解决方案。
2026-02-07 12:36:28
84
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的水果质量识别系统(Python+PySide6界面+训练代码)
本文详细介绍了一个完整的水果质量识别系统的设计与实现,该系统基于YOLOv5/v6/v7/v8深度学习框架,结合PySide6图形界面,实现了对多种水果(苹果、香蕉、橙子等)的质量(新鲜、腐烂、损伤)进行实时检测和分类。文章将从技术选型、数据集构建、模型训练、性能优化到桌面应用部署进行全方位讲解,并提供完整的可执行代码。
2026-02-07 12:35:55
159
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的活体人脸检测系统(Python+PySide6界面+训练代码)
活体人脸检测技术是计算机视觉领域的重要研究方向,在金融支付、身份认证、安防监控等领域具有广泛应用价值。本文将详细介绍基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的活体人脸检测系统的完整实现方案,包括算法原理、模型训练、系统部署和用户界面开发,并提供完整的代码实现。
2026-02-07 12:35:23
195
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的水果识别系统(Python+PySide6界面+训练代码)
本文详细介绍了基于YOLO系列目标检测算法(YOLOv5/YOLOv6/YOLOv7/YOLOv8)的水果识别系统的设计与实现。系统采用PyTorch深度学习框架,结合PySide6构建了直观的用户界面,实现了从数据准备、模型训练到可视化推理的完整流程。文章将深入探讨YOLO算法原理、系统架构设计、代码实现细节,并提供完整可运行的代码。本系统可广泛应用于智能农业、自动分拣、超市结算等多个领域。
2026-02-07 12:34:44
57
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的交通信号标志识别软件(Python+PySide6界面+训练代码)
交通信号标志识别是自动驾驶和智能交通系统中的关键技术之一。本文将详细介绍基于YOLOv5、YOLOv6、YOLOv7和YOLOv8的交通信号标志识别系统的完整开发流程,涵盖数据集准备、模型训练、性能评估、Python实现以及PySide6图形界面开发。
2026-02-07 12:33:26
234
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的番茄成熟度检测系统(Python+PySide6界面+训练代码)
本文详细介绍了一个基于YOLOv5/YOLOv6/YOLOv7/YOLOv8的番茄成熟度检测系统。该系统能够准确识别和分类番茄的成熟度阶段(未成熟、半成熟、成熟、过熟),并提供了完整的Python实现、PySide6图形界面以及训练代码。本文将深入探讨算法原理、数据集构建、模型训练、系统集成等关键技术环节。
2026-02-07 12:32:53
68
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的口罩识别系统(Python+PySide6界面+训练代码)
随着全球公共卫生事件的频发,口罩佩戴检测成为公共场所防疫的重要环节。本文详细介绍了基于YOLO系列算法(YOLOv5/YOLOv6/YOLOv7/YOLOv8)的口罩识别系统的完整实现过程。系统采用Python开发,结合PySide6构建了直观的用户界面,并提供了完整的训练代码和预训练模型。本文将深入探讨YOLO算法原理、数据集构建、模型训练、系统实现以及性能评估等关键环节,为相关研究提供完整的技术参考。
2026-02-07 12:32:22
215
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的植物病害检测系统(Python+PySide6界面+训练代码)
本项目基于YOLOv5、YOLOv6、YOLOv7和YOLOv8,构建了一个完整的植物病害智能检测系统。系统不仅提供了高效的检测算法实现,还配备了用户友好的图形界面,支持模型训练、推理和结果可视化,为农业科研人员和种植户提供了一站式的解决方案。
2026-02-07 12:31:49
122
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的舰船检测与识别系统(Python+PySide6界面+训练代码)
随着海洋经济的发展和海上活动的日益频繁,舰船检测与识别技术在海洋监控、港口管理、海上救援和国防安全等领域具有重要应用价值。本文将详细介绍基于YOLO系列目标检测算法(YOLOv5/YOLOv6/YOLOv7/YOLOv8)的舰船检测与识别系统的完整实现方案。系统集成了PySide6图形界面,提供了从数据准备、模型训练到部署应用的全流程解决方案
2026-02-07 12:31:08
99
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的教室人员检测与计数(Python+PySide6界面+训练代码)
随着智能教育的发展,教室人员检测与计数在教育管理、安全监控、资源优化等方面具有重要意义。本文详细介绍了基于YOLO系列目标检测算法的教室人员检测与计数系统,采用YOLOv5、YOLOv6、YOLOv7和YOLOv8等先进模型,并结合PySide6构建了用户友好的图形界面。系统实现了人员检测、计数、数据统计和可视化等功能。文章将详细介绍系统架构、算法原理、数据集准备、模型训练、界面开发以及完整代码实现。
2026-02-07 12:30:28
246
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的体育赛事目标检测系统(Python+PySide6界面+训练代码)
本文详细介绍了一个基于YOLOv5/YOLOv6/YOLOv7/YOLOv8的体育赛事目标检测系统的设计与实现。该系统能够自动检测体育赛事中的运动员、球类、裁判等目标,并提供了完整的Python实现、PySide6图形界面以及训练代码。系统支持多种YOLO版本,允许用户根据需求选择最适合的模型。本文将详细探讨系统架构、数据集准备、模型训练、界面设计等各个方面,并提供完整的代码实现。
2026-02-07 12:29:51
89
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的夜视行人检测系统(Python+PySide6界面+训练代码)
随着计算机视觉技术的飞速发展,目标检测已成为人工智能领域的重要研究方向。在众多应用场景中,夜视环境下的行人检测因其在安防监控、自动驾驶、军事侦察等领域的重要价值而备受关注。本文详细介绍了基于YOLOv5/YOLOv6/YOLOv7/YOLOv8的夜视行人检测系统的设计与实现,包括完整的模型训练流程、PySide6图形界面开发以及系统集成。
2026-02-07 12:29:12
124
原创 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的的机械器件识别系统(Python+PySide6界面+训练代码)
本文详细介绍了基于YOLOv5/v6/v7/v8算法的机械器件识别系统的完整开发流程。系统采用PySide6构建用户界面,结合深度学习目标检测技术,能够高效识别机械场景中的各种器件。本文将涵盖数据集准备、模型训练、系统实现及性能优化等关键环节,并提供完整的代码实现。
2026-02-07 12:20:42
203
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅