26. 删除排序数组中的重复项
给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度。
不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成。
示例 1:
给定数组 nums = [1,1,2], 函数应该返回新的长度 2, 并且原数组 nums 的前两个元素被修改为 1, 2。 你不需要考虑数组中超出新长度后面的元素。
示例 2:
给定 nums = [0,0,1,1,1,2,2,3,3,4], 函数应该返回新的长度 5, 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4。 你不需要考虑数组中超出新长度后面的元素。
说明:
为什么返回数值是整数,但输出的答案是数组呢?
请注意,输入数组是以“引用”方式传递的,这意味着在函数里修改输入数组对于调用者是可见的。
你可以想象内部操作如下:
// nums 是以“引用”方式传递的。也就是说,不对实参做任何拷贝 int len = removeDuplicates(nums); // 在函数里修改输入数组对于调用者是可见的。 // 根据你的函数返回的长度, 它会打印出数组中该长度范围内的所有元素。 for (int i = 0; i < len; i++) { print(nums[i]); }
思路是:有几种方式做这个题目,一开始我就想着怎么用python的特性,也就是前两种方法,但是都没有通过了。后面两种方法通过了。
代码:
class Solution:
def removeDuplicates(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
#### the first method
# nums = set(nums)
# return len(list(nums))
#### the second
# res = []
# for i in nums:
# if i not in res:
# res.append(i)
# print(res)
# return len(res)
#### the third method
# i = 0
# while i < len(nums) -1:
# if nums[i] == nums[i+1]:
# nums.remove(nums[i])
# else:
# i = i +1
# return len(nums)
#### the last one
size = len(nums)
if size == 0:
return 0
j = 0
for i in range(1, size):
if nums[j] != nums[i]:
nums[j+1] = nums[i]
j += 1
return j+1
122. 买卖股票的最佳时机 II
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4] 输出: 7 解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。 随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
输入: [1,2,3,4,5] 输出: 4 解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。 注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。 因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1] 输出: 0 解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
代码思路:其实就是一个相邻元素遍历比较,下面的代码中,第二种速度要快一点,因为比较次数少了,看看代码吧。
class Solution:
def maxProfit(self, prices):
"""
:type prices: List[int]
:rtype: int
"""
#### the first method
# sum = 0
# for i in range(0, len(prices) -1):
# if prices[i] < prices[i+1]:
# sum += prices[i+1] - prices[i]
# return sum
#### the second method
sum = 0
for i in range(1, len(prices)):
# if prices[i] - prices[i-1] > 0:
# sum += prices[i] - prices[i-1]
sum += max((prices[i] - prices[i-1]), 0)
return sum
121. 买卖股票的最佳时机
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。
注意你不能在买入股票前卖出股票。
示例 1:
输入: [7,1,5,3,6,4] 输出: 5 解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。 注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。
示例 2:
输入: [7,6,4,3,1] 输出: 0 解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
代码如下:
class Solution:
def maxProfit(self, prices):
"""
:type prices: List[int]
:rtype: int
"""
#### 第一种方法超时了,不过自己设置的测试小案例是通过的,只是方法需要改进
# max_profit = 0
# for i in range(0, len(prices)):
# for j in range(i, len(prices)):
# max_profit = max(prices[j] - prices[i], max_profit)
# return max_profit
#### the second method
#### 思想就是找到数组中最大数以及最小数,同时也要考虑数组元素的顺序,
#### 特殊情况是给定的数组元素是逆序的,那么返回值为0
# if len(prices) < 2:
# return 0
# min_price = prices[0]
# max_profit = 0
# for cur_price in prices:
# min_price = min(cur_price, min_price)
# max_profit = max(max_profit, (cur_price - min_price))
# return max_profit
####最优的时间效率是下面这个,其实上面的做法很类似
if len(prices) < 2:
return 0
min_price = prices[0]
max_profit = 0
for price in prices:
if price < min_price:
min_price = price
if price - min_price > max_profit:
max_profit = price - min_price
return max_profit
189. 旋转数组
给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数。
示例 1:
输入: [1,2,3,4,5,6,7]和 k = 3 输出: [5,6,7,1,2,3,4] 解释: 向右旋转 1 步: [7,1,2,3,4,5,6] 向右旋转 2 步: [6,7,1,2,3,4,5] 向右旋转 3 步: [5,6,7,1,2,3,4]
示例 2:
输入: [-1,-100,3,99] 和 k = 2 输出: [3,99,-1,-100] 解释: 向右旋转 1 步: [99,-1,-100,3] 向右旋转 2 步: [3,99,-1,-100]
说明:
- 尽可能想出更多的解决方案,至少有三种不同的方法可以解决这个问题。
- 要求使用空间复杂度为 O(1) 的原地算法。
代码中包含思路:
class Solution4:
def rotate(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: void Do not return anything, modify nums in-place instead.
"""
#### 第一种借助额外空间,但是不符合要求,不能满足题目条件
# length = len(nums)
# k = k % length
# array = [1] * length
# for i in range(length):
# if i + k < length:
# array[i+k] = nums[i]
# else:
# array[i+k-length] = nums[i]
# return array
#### 第二种方式,就是借用数组的特性了
# length = len(nums)
# k = k % length
# nums[:] = nums[-k:] + nums[:-k]
# return nums
#### 第三种方式, 借助一个临时存放前k个元素的数组
length = len(nums)
k = k % length
temp = nums[(length - k):]
for i in range(length-k-1, -1, -1):
nums[(i+k) % length] = nums[i]
nums[:k] = temp
s = Solution4()
print(s.rotate([1,2,3,4,5,6,7], 3))