题目:假设在n进制下,下面的等式成立,567*456=150216,n的值是( )
A .9 B .10 C. 12 D .18
假设在n进制下,将567*456=150216按照n进制展开:
(5*n^2+6*n+7)+(4*n^2+5*n+6)=20*n^4+49*n^3+88*n^2+71*n+42
即:20*n^4+49*n^3+88*n^2+71*n+42=1*n^5+5*n^4+2*n^2+1*n+6 --------------(1)
对(1)式两边同时对n取余:
42%n==6%n==6 (此时由题目中的选项可知,n>6,所以6%==6) --------------(2)
由(2)式,我们可以得出选项A,C,D都符合,因而我们可以进行下一步改进:
对(1)式两边先除以n再对n进行取余:
(71+42/n)%n==(1+6/n)%n==1 --------------(3)
此时,我们再将A,C,D三个选项的值带入到(3)中:
A:(71+42/9)%9==3!=1
C:(71+42/12)%12==2!=1
D :(71+42/18)%18==1
答案:D