目录
一,大O的渐进表示法
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶
最坏情况:任意输入规模的最大运行次数(上界) 常说的
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
二,时间复杂度
算法中的基本操作的执行次数,为算法的时间复杂度。
常见时间复杂度计算
递归的时间复杂度=递归次数*每次递归之后的操作次数
三,空间复杂度
空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度以空间复杂度算的是变量的个数
递归的次数就是空间复杂度