目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
更多选题指导:
大家好,这里是海浪学长计算机视觉毕设专题,本次分享的课题是
🎯【毕业设计选题】计算机视觉方向毕设选题推荐
选题背景
计算机专业的毕业设计课题在许多院校中的要求似乎越来越高,这给学生们带来了很大的困扰和压力。在大四这个关键时期,学生们面临着时间紧迫、任务繁重的情况,需要同时应对考研、考公、实习等多个方面的挑战,这使得他们感到非常忙碌,几乎没有时间和精力去应对更加复杂和困难的毕业设计课题。作为经历过这个阶段的前辈,我整理了一些选题,希望可以给大家一些参考。
毕设选题
计算机视觉是一个涉及图像和视频分析的研究领域,毕业设计可以选择多个研究方向。以下是一些计算机视觉方向的毕业设计研究方向和相关技术框架的介绍:
图像分类与目标检测
计算机视觉中的图像分类与目标检测方向涵盖了多个研究领域,包括目标检测算法改进、特定领域应用、轻量化与加速、多目标检测与跟踪、图像分类深度学习模型、零样本目标检测等。相关的技术框架包括Faster R-CNN、YOLO、SSD、RetinaNet、EfficientDet、MobileNet、DeepSORT、ResNet。
在图像分类与目标检测方向,以下是学长整理的选题:
基于深度学习的水果识别系统设计
基于深度学习的海面垃圾检测系统
基于深度学习的目标检测研究进展
基于深度学习的病鸡识别系统开发
基于深度学习的疲劳驾驶检测系统
基于深度学习的垃圾分类方法综述
基于深度学习的羊只计数系统研究
基于深度学习的安检图像识别系统
基于深度学习的智能监控系统设计
基于深度学习的手部增强现实技术
基于深度学习的短视频广告推送系统
基于深度学习的玉米拔节期冠层识别
基于深度学习的船舶标识号识别方法
基于深度学习的小目标检测算法综述
基于深度学习的批量二维码识别系统
基于深度学习的学生课堂注意力评价
基于树莓派的智能监控系统设计与实现
基于深度学习的声呐图像目标检测系统
基于深度学习的智能无人果蔬售卖系统
基于深度学习的钢琴手型指法识别系统
基于深度学习的智能无人收银系统设计
基于深度学习的智能垃圾分拣系统设计
基于深度学习的交通标志检测系统仿真
基于深度学习的圆钢表面缺陷检测系统
基于深度学习的校园纪律监管系统设计
基于深度学习的喷码检测识别系统研究
基于深度学习的无人售货购物系统设计
基于深度学习的前车碰撞预警系统研究
基于深度学习的智慧社区安防管理系统
基于深度学习的暴恐物品识别算法研究
基于深度学习的中餐菜品检测算法研究
基于DETR的道路环境下双目测量系统
基于人体体型差异的机器人运动系统设计
基于OpenCV的机器人分拣系统设计
基于人工智能的红外热成像监控系统设计
基于深度学习的树种识别系统设计与试验
基于深度学习的商品分拣系统设计与实现
基于对抗学习与深度估计的车辆检测系统
基于深度学习的烟雾与火灾检测算法综述
基于深度学习的人—物交互关系检测综述
基于深度学习的图片中商品参数识别方法
基于深度学习的智能阅卷系统的算法设计
基于深度学习的可回收垃圾视觉分拣系统
基于深度学习的道路车辆目标检测系统设计
基于FPGA的运动目标实时检测系统设计
基于视觉的多模型级联受电弓分析系统设计
基于深度学习的遥感影像目标检测系统设计
基于深度学习的关键岗位人员行为分析系统
基于深度学习的足球赛事视频动作识别系统
基于深度学习的实时图像目标检测系统设计
基于深度学习的自动驾驶目标检测方法综述
基于ARM和深度学习的智能行人预警系统
基于深度学习的社区安防异常行为检测研究
相关代码示例
import torch
import cv2
from PIL import Image
# 加载YOLOv5模型
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
# 加载图像
image = Image.open('image.jpg')
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# 进行目标检测
results = model(image)
# 处理检测结果
for result in results.xyxy[0]:
x1, y1, x2, y2, conf, cls = result
label = model.names[int(cls)]
score = conf.item()
# 在图像上绘制检测结果
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
cv2.putText(image, f'{label}: {score:.2f}', (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# 显示结果图像
cv2.imshow('Object Detection', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
学长项目示例
人脸识别与人脸表情分析
人脸识别和人脸表情分析是计算机视觉领域的重要研究方向。人脸识别旨在自动识别和验证人脸身份,常用的技术框架包括基于深度学习的方法和传统的特征提取与分类方法。人为人机交互、用户体验评估等领域提供了重要支持,并随着深度学习的发展取得了显著进展。
在人脸识别与人脸表情分析方向,以下是学长整理的选题:
基于深度学习的人脸识别系统
心理学视角下的自动表情识别
基于数据场的图像数据挖掘研究
基于物联网的人脸识别系统设计
基于表情识别的课堂学情分析系统
基于表情识别技术的电影效果反馈
基于局部二元模式的人脸表情识别
基于情感识别的智能教学系统研究
基于人脸识别的公交无感支付系统
基于人脸识别的学校考勤系统设计
基于人脸特征识别的高校查寝系统
基于树莓派的PCA人脸识别系统
基于NR网络的门禁系统研究与设计
基于单片机的宿舍安全管理门禁系统
基于动态特征的真伪笑容表达与识别
基于局部流形注意力的人脸表情识别
基于情感建模的教学辅助系统的研究
基于人脸识别的宿舍查寝系统的设计
基于语义属性的人脸表情识别新方法
基于表情识别的在线学习效果监测研究
基于表情识别的智慧教室授课评估系统
基于表情识别技术的智能教室系统实现
基于钉钉平台的高校课堂考勤系统研究
基于面部表情分析比对的智能拍摄系统
基于面部表情识别的课堂教学反馈系统
基于人脸识别的矿井人员考勤管理系统
基于人脸识别的学生听课评估系统设计
基于人脸识别技术的英语在线考试系统
基于社区安全的人群甄别视频预警研究
基于深度学习的人脸表情识别系统研究
基于生物特征识别的考务管理系统设计
基于随机权重分配策略的面目表情识别
基于痛苦表情识别的智能医疗监护系统
基于唇语识别的身份认证研究及系统设计
基于多角度人脸识别模型的课堂点名系统
基于小人脸识别的高校课堂考勤系统研究
基于边缘计算的人脸识别视频传输系统设计
基于卷积神经网络的人脸识别系统设计研究
基于人脸表情识别的电子黑板的研发及应用
基于外在特征的孤独症儿童辅助诊断的研究
基于表情分析与视线追踪的广告评价方法研究
基于表情识别和持续改进的在线学习系统研究
基于改进的ResNet的人脸表情识别系统
基于人脸表情识别的在线课堂学生专注度分析
基于社会服务机器人的脸部共性信息识别系统
基于主动机器视觉的人脸跟踪与表情识别系统
结合深度神经网络的网络监控系统微表情识别
长隧道内光环境参数对驾驶员心理状态的影响
基于CNN集成学习的人脸表情识别系统的设计
基于表情识别的疲劳驾驶监测系统的设计与实现
基于面部特征分析技术的地铁安防监控系统研究
基于人脸表情识别的智慧教育系统的设计与实现
项目代码示例
import cv2
# 加载人脸识别模型
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# 加载图像
image = cv2.imread('image.jpg')
# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 进行人脸检测
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
# 在图像上绘制人脸框
for (x, y, w, h) in faces:
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)
# 显示结果图像
cv2.imshow('Face Detection', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
学长项目示例
视频分析与动作识别
视频分析和动作识别是计算机视觉领域的重要研究方向,涉及视频内容的解析、理解和动作信息的提取。视频分析包括目标检测与跟踪、内容识别与检索等任务,而动作识别则专注于从视频中识别和理解人类的动作行为为实现更精确和全面的视频分析和动作识别提供了更多的机会。
在视频分析与动作识别方向,以下是学长整理的选题:
基于深度学习的人体动作识别系统
基于计算机视觉的健身指导系统设计
基于姿态识别的太极拳动作评分系统
基于实时视频感知的虚拟体育交互系统
基于智能手环运动状态的音乐生成系统
基于Kinect的运动学习系统的设计
基于物联网的高校智能教室系统技术研究
使用行人重识别算法的智能视频监控系统
基于图像处理的矿用电机车行人预警系统
基于音视频的营区周界警戒关键技术研究
基于人脸识别的客流分析技术研究与实现
基于深度学习的足球赛事视频动作识别系统
基于步态特征的车辆前方行人识别系统研究
基于LSTM的行人过街意图识别技术研究
基于边缘计算的景区不文明行为抓拍系统设计
学长项目示例
选题迷茫
毕设开题阶段,同学们都比较迷茫该如何选题,有的是被要求自己选题,但不知道自己该做什么题目比较合适,有的是老师分配题目,但题目难度比较大,指导老师提供的信息和帮助又比较少,不知道从何下手。与此同时,又要准备毕业后的事情,比如考研,考公,实习等,一边忙碌备考或者实习,一边还得为毕设伤透脑筋。
选题的重要性
毕设选题其实是重中之重,选题选得是否适合自己将直接影响到后面的论文撰写和答辩,选题不当很可能导致后期一系列的麻烦。
1.选题难易度
选题不能太难,也不能太简单。选题太难可能会导致知识储备不够项目做不出来,选题太难,则可能导致老师那边不同意开题,很多同学的课题被一次次打回来也是这个原因之一。
2.工作量要够
除非是算法类或者科研性项目,项目代码要有一定的工作量和完整度,否则后期论文的撰写会很难写,因为论文是要基于项目写的,如果项目的工作量太少,又缺乏研究性的东西,则会导致很难写出成篇幅的东西。
更多选题指导
我是海浪学长,创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!
最后
🏆🏆🏆为帮助大家节省时间,如果对开题选题,或者相关的技术有不理解,不知道毕设如何下手,都可以随时来问学长,我将根据你的具体情况,提供帮助。