毕业设计:基于人脸识别的实验室智能门禁系统

目录

前言

项目背景

设计思路

数据集

模型训练

更多帮助


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

       大家好,这里是海浪学长计算机毕设专题,本次分享的课题是

       🎯基于人脸识别的实验室智能门禁系统

项目背景

       在当今科技快速发展的时代,智能门禁系统已经成为许多实验室和研究机构的必备设备。然而,传统的门禁系统存在一些局限性,例如易受到身份证件遗失或盗用的影响,安全性无法得到充分保障。因此,基于人脸识别的实验室智能门禁系统应运而生。通过使用先进的计算机视觉和深度学习技术,该系统能够准确地识别和验证用户的身份,从而提高实验室的安全性和便利性。这项研究的意义在于为实验室提供一个更安全、高效的门禁解决方案,同时推动了人脸识别技术在实际应用中的发展。

设计思路

       AdaBoost算法,全称为自适应增强算法,是一种集成学习方法,用于提高分类器的性能。它通过组合多个弱分类器来构建一个强分类器,每个弱分类器都关注于前一轮分类错误的样本。在每一轮中,AdaBoost根据样本的权重调整分类器的训练过程,使得在下一轮中,被错误分类的样本得到更多的关注。这样,AdaBoost能够有效地对复杂问题进行分类,并在每一轮中重点关注难以分类的样本。通过迭代训练和加权投票,AdaBoost将多个弱分类器的预测结果进行组合,最终得到一个具有较高准确性和泛化能力的强分类器。AdaBoost算法在机器学习中被广泛应用,特别是在人脸检测、目标识别和数据挖掘等领域,取得了显著的成果。

毕业设计:基于人脸识别的实验室智能门禁系统

       PCA算法,全称为主成分分析,是一种常用的降维技术和数据预处理方法。它通过线性变换将原始高维数据转换为一组低维特征,这些特征称为主成分。PCA的目标是通过保留尽可能多的数据方差来减少数据的维度,同时降低特征之间的相关性。在PCA中,主成分按照数据的方差递减的顺序排列,因此前几个主成分能够保留数据中的大部分信息。通过选择适当数量的主成分,可以实现数据的降维,并且保留了原始数据集的重要特征。PCA算法在数据可视化、特征提取和模式识别等领域具有广泛的应用。通过PCA,我们可以更好地理解数据的内在结构、减少数据的冗余信息,并加速后续的数据分析和机器学习过程。

数据集

       由于网络上没有现有的合适的数据集,我决定自己进行拍摄,在实验室进行实地拍摄,收集了各种实验室场景的照片。我特别关注用户进入实验室并进行人脸识别的情况,以及与门禁系统相关的安全设施。通过这些现场拍摄,我能够捕捉到真实的实验室环境和多样的工作场景,这将为我的研究提供更准确、可靠的数据。我相信这个自制的数据集将为实验室智能门禁系统的人脸识别研究提供有力的支持,并为该领域的发展做出积极贡献。
       为了增加数据集的多样性和泛化能力,我采用了数据扩充技术。通过应用图像处理算法,如旋转、平移、缩放和添加噪声等,对原始图像进行多样化的变换,生成了更多的训练样本。这种数据扩充方法能够增加训练样本的数量和多样性,提高模型的鲁棒性和准确性。同时,我还进行了数据集的划分,将其分为训练集、验证集和测试集,以便评估和优化模型的性能。通过数据扩充和合理的数据集划分,我能够更全面地训练和评估基于人脸识别的实验室智能门禁系统,为实验室安全提供更可靠的保障。

for filename in os.listdir(original_images_folder):
    image_path = os.path.join(original_images_folder, filename)
    image = cv2.imread(image_path)
    
    # 图像旋转
    for angle in rotation_angles:
        rotated_image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
        rotated_filename = f"rotated_{angle}deg_{filename}"
        rotated_image_path = os.path.join(augmented_images_folder, rotated_filename)
        cv2.imwrite(rotated_image_path, rotated_image)

    # 图像平移
    height, width = image.shape[:2]
    max_translation = int(translation_range * min(height, width))
    for tx in range(-max_translation, max_translation+1, max_translation//5):
        for ty in range(-max_translation, max_translation+1, max_translation//5):
            translation_matrix = np.float32([[1, 0, tx], [0, 1, ty]])
            translated_image = cv2.warpAffine(image, translation_matrix, (width, height))
            translated_filename = f"translated_{tx}_{ty}_{filename}"
            translated_image_path = os.path.join(augmented_images_folder, translated_filename)
            cv2.imwrite(translated_image_path, translated_image)

模型训练

       图形用户界面(GUI)是计算机与用户之间的交互接口,通过图形方式显示用户界面以方便用户操作。在嵌入式系统中,选择合适的GUI开发工具对于显示图像和实现人机交互非常重要。常用的嵌入式GUI工具包括QT、MiniGUI、Microwindows和OpenGL等,其中本文选择使用QT进行用户界面开发。QT是一个跨平台的图形界面工具,具有广泛的应用领域,可用于Linux桌面系统和ARM平台等。在安装和使用上,根据不同的平台和需求进行相应的配置和编译,例如PC平台上安装完整的QT并直接运行,而ARM平台则需要使用ARM版本的QT库进行编译和下载到开发板上运行。 

       人脸识别中的训练部分,首先将训练集中的样本图像转化为向量表示,然后计算样本的平均脸和每个样本脸与平均脸的差值。接下来,通过求解协方差矩阵的特征值和特征向量,建立特征脸空间,并选择前几个最大特征值对应的特征向量。最后,将每个样本脸与平均脸的差值投影到特征脸空间,得到每幅图像中人脸的特征向量。为了提高人脸识别的鲁棒性和泛化能力,可以引入正则化技术来约束特征脸空间的稀疏性或平滑性,减少噪声或不相关信息的影响。训练部分的PCA人脸识别方法包括将样本图像转化为向量表示、计算平均脸和差值、建立特征脸空间以及投影到特征脸空间获取特征向量。为了提高鲁棒性和泛化能力,可以引入正则化技术。

毕业设计:基于人脸识别的实验室智能门禁系统

def vectorize_images(images):
    num_images = len(images)

    vectorized = np.reshape(images, (num_images, -1))
    return vectorized

# 计算样本的平均脸
def compute_average_face(images):
    num_images = len(images)
    average_face = np.mean(images, axis=0)
    return average_face

# 计算每个样本脸与平均脸的差值矩阵
def compute_difference_matrix(images, average_face):

    num_images = len(images)

    difference_matrix = images - average_face

    return difference_matrix

# 建立特征脸空间
def build_eigenfaces_space(difference_matrix, num_components):

    covariance_matrix = np.cov(difference_matrix, rowvar=False)

    eigenvalues, eigenvectors = np.linalg.eig(covariance_matrix)

    top_eigenvalues = eigenvalues[:num_components]

    top_eigenvectors = eigenvectors[:, :num_components]

    eigenfaces_space = np.dot(difference_matrix.T, top_eigenvectors)

    return eigenfaces_space

# 将训练集中的每个样本脸投影到特征脸空间,得到特征向量
def project_to_eigenfaces_space(image, average_face, eigenfaces_space):

    feature_vector = np.dot(difference_vector, eigenfaces_space)
    return feature_vector

       识别部分,首先将待识别的人脸图像与平均脸的差值计算,并将差值投影到特征脸空间,得到待识别人脸图像的特征向量。然后,计算待识别人脸图像的特征向量与训练部分得到的每个人脸的特征向量之间的距离。常采用欧氏距离公式进行计算,并根据计算结果选出与待识别人脸最接近的人脸,并计算两者之间的可信度。最后,设定一个阈值,如果可信度大于阈值,则识别成功,认定该人脸属于数据库中的人脸;反之,如果可信度小于阈值,则识别失败。在识别部分,还可以采用其他距离度量方法,如马氏距离,并结合基于类别的方法,如最近邻分类器、支持向量机等,来提高人脸识别的性能和准确性。

毕业设计:基于人脸识别的实验室智能门禁系统

def vectorize_image(image):
    vectorized_image = np.reshape(image, (-1,))
    return vectorized_image

def project_to_eigenfaces_space(image, average_face, eigenfaces_space):

    difference_vector = image - average_face

    feature_vector = np.dot(difference_vector, eigenfaces_space)
    return feature_vector

def compute_euclidean_distance(vector1, vector2):
    distance = np.linalg.norm(vector1 - vector2)
    return distance

更多帮助

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值