毕业设计:基于机器学习的重庆市气温预测与穿衣建议系统

目录

前言

项目背景

数据集

设计思路

更多帮助


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

       大家好,这里是海浪学长计算机毕设专题,本次分享的课题是

       🎯基于机器学习的重庆市气温预测与穿衣建议系统

项目背景

       随着气候变化和城市化进程的加快,天气影响着人们的日常生活,特别是在温州市这样的气候多变地区。天气的变化直接关系到居民的穿衣、出行和其他生活安排。传统的天气预报往往难以提供个性化、实时的建议,尤其是在温度变化频繁的情况下。构建能够准确预测重庆市气温并及时提醒用户添加或减少衣物、带伞等的系统,不仅能提高居民的生活质量,还能增强公众对天气变化的敏感性与应对能力。该研究具有重要的社会意义和实际应用价值。

数据集

       数据准备收集重庆市的历史气温数据,包括每日的最高气温、最低气温、湿度、风速等气象信息。这些数据来源可以包括气象部门、公开的气象数据库和相关研究机构。数据收集后,进行清洗和预处理,以去除缺失值和异常值。清洗后的数据需要标准化处理,以统一数据格式。将数据转换为适合模型训练的格式,包括将时间序列数据分割成训练集、验证集和测试集。

设计思路

       图卷积网络是一种专门处理图数据的深度学习模型。与传统的卷积神经网络不同,GCN能够在非结构化图形数据上进行特征学习,适用于许多复杂的应用场景,如社交网络分析、推荐系统和生物信息学等。GCN通过考虑图的邻接关系,将节点特征与其邻居节点的特征结合,从而提取出图中节点的局部和全局特征。其主要思想是通过卷积操作对图结构进行处理,形成新的节点表示,这种表示能够有效捕捉节点之间的关系。在重庆市气温预测与穿衣建议系统中,GCN能够发挥重要作用。通过将气象站视作图的节点,气象站之间的距离和气象数据关系作为图的边,GCN可以有效地分析各个气象站的气温变化及其相互影响。

基于机器学习的重庆市气温预测与穿衣建议系统

       注意力机制是一种模仿人类视觉注意力的深度学习技术,旨在提高模型在处理序列数据时的表现。注意力机制通过动态调整输入特征的权重,帮助模型聚焦于与当前任务最相关的信息。这种方法在自然语言处理和计算机视觉等领域得到了广泛应用,并在气温预测任务中展现出其价值。通过引入注意力机制,模型能够在处理历史气温数据时,识别出对未来气温变化影响最大的关键因素,如特殊天气事件、季节性变化以及历史气温的周期性波动。

基于机器学习的重庆市气温预测与穿衣建议系统

       长短期记忆网络(LSTM)是一种先进的递归神经网络(RNN),专门设计用于处理序列数据。传统的RNN在处理长序列时,常常面临梯度消失和梯度爆炸的问题,这使得模型难以学习长期依赖关系。LSTM通过引入门控单元,极大地增强了模型的记忆能力。LSTM的内部结构包含三个主要的门控机制:输入门、遗忘门和输出门。输入门决定哪些信息需要被写入细胞状态,遗忘门则控制哪些信息需要被丢弃,而输出门则决定细胞状态的哪些部分将影响最终的输出。这种灵活的门控机制使得LSTM能够选择性地保留重要信息,并有效地遗忘无关信息,从而实现对时间序列数据的有效建模。

基于机器学习的重庆市气温预测与穿衣建议系统

       在重庆市气温预测与穿衣建议系统中,LSTM的应用显得尤为重要。气候变化具有高度的时间依赖性,过去的气温数据往往能够提供有关未来气温变化的重要线索。通过分析历史气温数据,LSTM能够识别出气温变化的趋势和季节性波动。例如,系统可以学习到每年春季气温逐渐上升的模式,以及冬季气温回落的规律。利用LSTM模型,用户可以输入最近几天的气温数据,系统将根据这些信息预测未来几天的气温变化。这种基于时间序列的预测能力,不仅使得用户能够提前做好穿衣准备,还能够为用户提供更为个性化的穿衣建议。通过准确的气温预测,用户可以选择合适的服装,提升日常生活的舒适度和便捷性,有效降低因气候变化带来的不适应,并增强日常活动的舒适感和愉悦感。

基于机器学习的重庆市气温预测与穿衣建议系统

       在实际应用中,LSTM还可以与其他算法结合,进一步提升气温预测的准确性和可靠性。结合图卷积网络(GCN)和注意力机制,可以使模型更加关注与气温变化相关的特定时间段和气象因素。这样的多模型结合策略,不仅提高了预测结果的准确性,还增强了系统的智能化水平,使得气温预测与穿衣建议系统能够更好地适应重庆的气候特点。通过这种系统,用户可以在日常生活中获得更科学的气温预测与穿衣建议,帮助他们在多变的气候条件下做出更明智的选择,确保生活的舒适与便捷。

import torch
import torch.nn as nn

class GCNLayer(nn.Module):
    def __init__(self, in_features, out_features):
        super(GCNLayer, self).__init__()
        self.weight = nn.Parameter(torch.randn(in_features, out_features))

    def forward(self, x, adjacency_matrix):
        return torch.matmul(adjacency_matrix, torch.matmul(x, self.weight))

class AttentionLayer(nn.Module):
    def __init__(self, hidden_size):
        super(AttentionLayer, self).__init__()
        self.Wa = nn.Linear(hidden_size, hidden_size)
        self.Ua = nn.Linear(hidden_size, hidden_size)

    def forward(self, x):
        score = torch.matmul(self.Wa(x), self.Ua(x).transpose(1, 2))
        attention_weights = torch.softmax(score, dim=-1)
        return torch.matmul(attention_weights, x)

class TempPredictionModel(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(TempPredictionModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.gc_layer = GCNLayer(hidden_size, hidden_size)  # GCN层
        self.attention = AttentionLayer(hidden_size)  # 注意力层
        self.fc = nn.Linear(hidden_size, num_classes)

    def forward(self, x, adjacency_matrix):
        lstm_out, _ = self.lstm(x)
        gcn_out = self.gc_layer(lstm_out, adjacency_matrix)
        att_out = self.attention(gcn_out)
        return self.fc(att_out)

       模型评估阶段使用测试集评估模型的预测性能。计算均方误差(MSE)、平均绝对误差(MAE)等指标,量化模型的预测准确性。可视化预测结果与真实值的对比,直观了解模型表现。通过评估,用户能够清晰了解模型在气温预测上的表现。

# 模型评估
model.eval()
with torch.no_grad():
    test_predictions = model(test_inputs, adjacency_matrix)
    test_loss = criterion(test_predictions, test_targets)
    print(f'Test MSE: {test_loss.item():.4f}')

    # 可视化预测结果
    import matplotlib.pyplot as plt
    
    plt.figure(figsize=(10, 5))
    plt.plot(test_targets.numpy(), label='真实气温', color='blue')
    plt.plot(test_predictions.numpy(), label='预测气温', color='red')
    plt.xlabel('时间步')
    plt.ylabel('气温')
    plt.legend()
    plt.title('气温预测结果对比')
    plt.show()

 海浪学长项目示例:

更多帮助

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值