防近视台灯有效果吗?近视的孩子适合什么灯光

对于台灯,如果说商家宣传的是可提高孩子视力,或者百分百可以防近视,那么这种品牌肯定是在欺诈消费者,纯属虚假宣传。但如果说是台灯可以一定程度上减少孩子近视的概率,那么还是可以做到的。对于近视的孩子,家长们可以考虑入手一些专门做护眼功能的品牌,因为专业的护眼灯,它们的灯光都是针对人眼在进行特殊的设计和调教,不仅可以在照度上保证明亮而均匀,色温上最贴近晨光,使眼睛尽可能的感到柔和,而且还会在控制蓝光和频闪伤害方面,达到人体能接受的豁免级,就算是长时间接触灯光,其伤害也是可轻松被人体接受,而且有些高质量的护眼灯还会有调光等各方面的黑科技辅助护眼,可进一步保护孩子视力,但市面上这样的品牌其实并不多,根据我多年的台灯使用经验,还是有几款产品非常不错的,可以参考一下。

1、南卡护眼台灯L1

南卡护眼台灯L1不仅参数优秀,而且其独家的护眼黑科技也是诚意满满、效果显著。参数方面,得到了符合国家质量标准的认证,国AA级的照度和均匀度,Rg0豁免级防蓝光,低风险等级防频闪,遮光性防眩光达标。护眼科技方面,PE自适应调光系统+PE算法,可实时地调整光线到最适合人眼的程度,最大程度的保护眼睛。独创的点散式导光技术,可使充分模拟清晨太阳光漫射地球的过程,配合4000k晨光色温的设计,使灯光与自然光的相似度达到了惊人的99.3%,更加健康自然地呵护眼睛。

南卡是一个有着丰富护眼经验的品牌,不会虚假宣传完全无蓝光、百分百保护眼睛、可提高孩子视力之类的,而是脚踏实地、实事求是地开发最有效的护眼功能,尽最大可能减少眼睛的近视、散光等各种问题,凭借“医用级”的技术理念和过硬的自研实力,南卡最终做出了媲美千元级的“不伤眼”护眼灯L1,获得了2万多名家长和孩子的认可。

现在的护眼台灯普遍售价几乎都是百元多起步,南卡以399元的价格做到了千元级产品才有的护眼效果,专业的性能使其价值远远超过其市场价格,可以说是千元以下护眼灯中天花板般的存在。

2、孩视宝VL225B-1台灯

孩视宝VL225B-1台灯四档色温可调,3400k、3650k、3900k、4150k,满足四季场景。该台灯也拥有AA级照度和均匀度,发光面是全光谱面环,全光谱灯珠保证了光谱多样性,面环双重发光使光照范围更广、光线更加柔和均匀。调光方面支持智能调光,也有15min自然睡眠、45分钟定时休息、补光小夜灯等实用功能。外观方面,该台灯整体为白色,灯头与底座为圆形,灯臂只有一段,呈扁平条状,连接处转轴为黑色,整体看起来较稳重。

3、好视力TG035台灯

好视力TG035台灯发光面较大,提供的照明范围较广,照度达到了国AA级,支持智能感光,自动调节亮度。显色指数Ra大于95,孩子灯下看见的色彩没有偏差。Rg0豁免级防蓝光,可有效呵护孩子眼睛。该台灯底座按键功能丰富,有读写、延时、番茄计时、色温调节、触碰滑动调光、开/关灯等功能。该台灯支持三档色温调节,冷暖有度,冷白光清澈明亮,适合伏案工作学习;暖白光接近自然,适合阅读;暖黄光温暖,适合营造氛围。该台灯灯臂下端转轴支持上下55°调节,上端转轴支持上下90°和左右330°调节,照射角度调节灵活。

4、米家台灯Lite

米家台灯Lite拥有固定的4000k读写色温,可普遍适用各种场景。该台灯外观小巧,小灯头发出的光线有国A级的照度,出光面为双棱镜设计,增大了照射面积,光线也更柔和,可防蓝光与可视频闪,显色性为Ra90以上。该台灯是小米生态链产品,支持小爱同学语音控制,也可以连接米家手动远程操作,可按键调节亮度。该台灯整体看起来纤薄简约,灯座上只有一个凹槽盲触按键,功能实用,轻触可开/关灯,长按可切换三个挡位的亮度,照射角度支持上下218°翻转、水平180°翻转调节。

【源码免费下载链接】:https://renmaiwang.cn/s/6hcxp 在C语言中,链表是一种常见的数据结构,用于存储动态数据集合。在这个“基于C的简单链表合并2排序程序”中,我们需要处理两个已经排序的链表,a和b,每个链表的节点包含学号(假设为整型)和成绩(也假设为整型)。目标是将这两个链表合并成一个新的链表,并按照学号的升序排列。我们来了解一下链表的基本概念。链表不同于数组,它不连续存储数据,而是通过指针将各个节点连接起来。每个节点通常包含两部分:数据域(存储学号和成绩)和指针域(指向下一个节点)。要实现这个合并和排序的过程,我们可以遵循以下步骤:1. **定义链表节点结构体**: 创建一个结构体类型,如`Node`,包含学号(score_id)和成绩(grade)字段,以及一个指向下一个节点的指针(next)。```ctypedef struct Node { int score_id; int grade; struct Node* next;} Node;```2. **初始化链表**: 在程序开始时,创建a和b链表的头节点,并确保它们的初始状态为空。3. **读取链表数据**: 从输入文件(假设为11.8中的文件)中读取数据,根据学号和成绩创建新的节点,并将其添加到相应的链表a或b中。这一步可能需要使用`fscanf`函数从文件中读取数据,并使用`malloc`分配内存创建新节点。4. **合并链表**: 合并两个链表的关键在于找到合适的位置插入b链表的节点。从头节点开始遍历a链表,比较当前节点的学号与b链表头节点的学号。如果b链表的学号更小,就将b链表的头节点插入到a链表的当前节点后面,然后继续比较b链表的新头节点(原头节点的下一个节点)与a链表的当前节点。当b链表为空或所有节点都已插入a链表时,合并完成。5. **排序链表**: 由于我们合并的时候
【源码免费下载链接】:https://renmaiwang.cn/s/0gh4u :“bp神经网络实现的iris数据分类”在机器学习领域,BP(Backpropagation)神经网络是一种广泛应用的监督学习算法,它主要用于解决非线性分类和回归问题。本项目实现了利用BP神经网络对鸢尾花(Iris)数据集进行分类。鸢尾花数据集是UCI机器学习库中的经典数据集,包含了三种不同鸢尾花品种的多个特征,如花瓣长度、花瓣宽度、萼片长度和萼片宽度,总计150个样本。:“bp神经网络实现的iris数据分类,UCI上下载的iris数据,适当调整误差精度,分类正确率可达到99%”我们需要理解UCI机器学习库中的Iris数据集。这个数据集由生物学家Ronald Fisher在1936年收集,是用于多类分类的典型实例。它包含3种鸢尾花(Setosa, Versicolour, Virginica)的4个特征,每种花有50个样本。在使用BP神经网络进行分类时,我们通常会先对数据进行预处理,包括数据清洗、标准化或归一化,以确保输入层的数值在同一尺度上。BP神经网络的核心在于反向传播算法,它通过计算预测值与真实值之间的误差,并将误差从输出层向输入层逐层反向传播,调整权重以减小误差。在训练过程中,我们通常设置学习率、迭代次数以及停止训练的阈值,以达到最佳性能。在这个项目中,通过对误差精度的适当调整,使得网络能够在训练完成后对鸢尾花的分类准确率高达99%,这表明网络具有很好的泛化能力。【详细知识点】:1. **BP神经网络**:由输入层、隐藏层和输出层组成,通过梯度下降法和链式法则更新权重,以最小化损失函数。2. **鸢尾花数据集(Iris dataset)**:包含了150个样本,每个样本有4个特征和1个类别标签,常用于分类任务的基准测试。3. **特征工程**:预处理数据,可能包括缺失值处理、异常值检测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值