合并K个排序链表--优先队列解决

本文探讨了如何高效地合并K个已排序的链表,通过优先队列实现了一个简洁的解决方案,避免了将所有链表转换为数组的暴力方法,从而降低了时间和空间复杂度。

0x01.问题

合并 k 个排序链表,返回合并后的排序链表。
输入示例:
[
1->4->5,
1->3->4,
2->6
]
输出示例:
1->1->2->3->4->4->5->6

本题是上题的升级版 合并两个有序链表

C++结构体:
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
 C++函数形式: ListNode* mergeKLists(vector<ListNode*>& lists) 

0x02.简要分析

与上个问题不同的是,这次要求的是k个链表的排序,而不仅仅是两个链表的排序了。

但基本的思路还是不变的,还是从每个里面拿出一个最小值,加在结果链表上。

但考虑到这里链表由很多,所以暴力的取出肯定是不可取的。

有一个思路是将多个链表最终转换为两个链表的合并,这其实就是分治的思路,肯定是可以的,在这里,我们使用一种更加好理解的解决办法。

最暴力的思路应该就是将所有的链表都转换为数组,目的是什么,就是为了排序简单,那么,我们可不可以在遍历的时候做到排序了,也就是说放入一个有序的容器内,没错,优先队列 就可以做到,我们可以维护一个小顶堆,也就是最小值优先队列,先把头节点入优先队列,每次拿出的时候,再把它的下一个节点入优先队列,因为优先队列的优先级的关系,所以放入的数据会变成有序的,这样,我们每次只要从队头拿出一个元素放入结果链表中就行了。

借助优先队列的帮助,这个问题就变得非常简单了,只要不断得入队出队,就完成了这个排序得过程。

0x03.解决代码–优先队列

class Solution {
public:
    struct mycomp{
        bool operator()(ListNode* a,ListNode* b){
            return a->val>b->val;
        }    
    };
    ListNode* mergeKLists(vector<ListNode*>& lists) {
          priority_queue<ListNode*, vector<ListNode*>, mycomp> queue;
          for(ListNode*head:lists){
              if(head) queue.push(head);
          }
          ListNode* dummy = new ListNode(-1);
          ListNode* temp = dummy;
          while(!queue.empty()){
              ListNode* p = queue.top();
              queue.pop();
              if(p->next) queue.push(p->next);
              temp->next=p;
              temp=temp->next;
          }
          return dummy->next;
    }
};

class Solution {
	public ListNode mergeKLists(ListNode[] lists) {
		if(lists==null || lists.length==0) {
			return null;
		}
		//创建一个堆,并设置元素的排序方式
		PriorityQueue<ListNode> queue = new PriorityQueue(new Comparator<ListNode>() {
			public int compare(ListNode o1, ListNode o2) {
				return (o1.val - o2.val);
			}
		});
		//遍历链表数组,然后将每个链表的每个节点都放入堆中
		for(int i=0;i<lists.length;i++) {
			while(lists[i] != null) {
				queue.add(lists[i]);
				lists[i] = lists[i].next;
			}
		}
		ListNode dummy = new ListNode(-1);
		ListNode head = dummy;
		//从堆中不断取出元素,并将取出的元素串联起来
		while( !queue.isEmpty() ) {
			dummy.next = queue.poll();
			dummy = dummy.next;
		}
		dummy.next = null;
		return head.next;
	}
}

ATFWUS --Writing By 2020–03–23

<think>好的,我需要帮用户解决如何使用Python通过优先队列合并K个升序链表的问题。用户特别提到了优先队列的方式,所以我要重点讲解这个方法的实现步骤。 首先,我得回忆一下优先队列(堆)的基本原理。合并K个链表时,通常的做法是每次从所有链表的头节点中选出最小的那个,然后将其加入结果链表。为了高效地获取最小值,优先队列是一个很好的选择,因为它可以在O(log k)的时间内插入和提取最小元素,这里k是链表的数量。 接下来,我需要考虑Python中如何实现优先队列。Python的heapq模块提供了堆操作,但是需要注意堆中的元素如何比较。因为链表节点本身可能没有直接定义比较方法,所以需要将节点的值作为排序依据,同时处理节点值相同的情况,避免比较错误。 然后,具体的步骤应该是这样的: 1. 初始化一个优先队列,并将每个链表的头节点依次入队。这里需要确保链表不为空,所以要先检查每个链表是否存在。 2. 创建一个哑节点作为结果链表的起始点,方便后续节点的添加。 3. 循环从堆中弹出最小节点,将其连接到结果链表,然后将该节点的下一个节点(如果存在)入队。 4. 重复上述过程直到堆为空,这样所有节点都被按顺序连接起来。 在代码实现中,需要注意堆中存储的元素结构。每个堆元素应该包含节点的值、一个唯一的标识符(防止当值相同时比较失败),以及节点本身。例如,可以构造一个元组(val, idx, node),其中idx是一个自增的计数器,确保即使val相同,元组之间也能正确比较。 另外,要处理边界情况,比如输入的链表列表为空,或者其中包含空链表的情况。在初始化堆的时候,应该跳过那些为空的链表,避免将None加入堆中导致错误。 现在,结合用户提供的引用内容,特别是引用[5]提到了使用STL中的优先队列,不过在Python中是用heapq实现的。引用[3]和[4]也提供了合并K个链表的Python代码,可能需要参考这些实现的结构,但用户需要的是优先队列的方法,所以需要重点放在这部分。 测试示例部分,用户给了一个例子,输入是三个链表,输出是合并后的有序链表。在代码中需要构造这样的测试用例,但用户可能更希望看到的是如何将链表结构转化为代码中的节点对象,以及如何调用合并函数。 最后,需要确保代码的正确性和效率。时间复杂度方面,每个节点被插入和弹出堆一次,每次操作是O(log k),总共有N个节点,所以总的时间复杂度是O(N log k),这比暴力方法(O(N k))要高效很多。 总结下来,步骤是: - 导入heapq模块。 - 初始化堆,并将各链表头节点入堆。 - 构建哑节点和当前指针。 - 循环处理堆中的节点,直到堆为空。 - 返回哑节点的下一个节点作为结果。 同时,在代码中要处理可能的异常情况,比如空输入,确保程序的鲁棒性。</think>### 使用优先队列合并K个升序链表的Python实现 #### 实现思路 1. **优先队列(堆)特性** 优先队列能高效获取当前K个链表头节点中的最小值,时间复杂度为$O(\log k)$,其中$k$为链表数量[^5]。 2. **节点入队规则** 将每个链表的头节点依次入队,堆中元素按节点值排序。每次弹出最小值后,将该节点的下一个节点(若存在)重新入队。 3. **哑节点技巧** 使用哑节点简化链表连接操作,避免处理头节点的特殊情况。 #### 实现代码 ```python import heapq class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next def mergeKLists(lists): heap = [] # 初始化堆,过滤空链表 for idx, node in enumerate(lists): if node: heapq.heappush(heap, (node.val, idx, node)) dummy = ListNode(-1) current = dummy while heap: val, idx, node = heapq.heappop(heap) current.next = node current = current.next if node.next: heapq.heappush(heap, (node.next.val, idx, node.next)) return dummy.next ``` #### 代码解析 1. **堆初始化** - `for idx, node in enumerate(lists)`:遍历所有链表,`idx`用于解决同值节点的比较冲突。 - `heapq.heappush(heap, (node.val, idx, node))`:将非空链表的头节点按值入堆。 2. **合并过程** - `current.next = node`:将当前最小节点连接到结果链表- `heapq.heappush(heap, (node.next.val, idx, node.next))`:将弹出节点的后继节点入堆。 3. **时间复杂度** 设$N$为总节点数,每个节点入堆/出堆操作耗时$O(\log k)$,总时间复杂度为$O(N \log k)$[^3]。 #### 示例测试 输入:`[[1,4,5], [1,3,4], [2,6]]` 输出:`[1,1,2,3,4,4,5,6]` ```python # 构造测试链表 list1 = ListNode(1, ListNode(4, ListNode(5))) list2 = ListNode(1, ListNode(3, ListNode(4))) list3 = ListNode(2, ListNode(6)) merged = mergeKLists([list1, list2, list3]) # 遍历输出结果 while merged: print(merged.val, end="->") merged = merged.next # 输出:1->1->2->3->4->4->5->6-> ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ATFWUS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值