23. 合并K个升序链表——优先级队列

题目:

给你一个链表数组,每个链表都已经按升序排列。
请你将所有链表合并到一个升序链表中,返回合并后的链表。
示例 1:

输入:lists = [[1,4,5],[1,3,4],[2,6]]
输出:[1,1,2,3,4,4,5,6]
解释:链表数组如下:
[
1->4->5,
1->3->4,
2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6
示例 2:

输入:lists = []
输出:[]
示例 3:

输入:lists = [[]]
输出:[]

提示:

k == lists.length
0 <= k <= 10^4
0 <= lists[i].length <= 500
-10^4 <= lists[i][j] <= 10^4
lists[i] 按 升序 排列
lists[i].length 的总和不超过 10^4

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/merge-k-sorted-lists
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

优先级队列

//第一种
priority_queue<int, vector<int>, greater<int> > q


//第二种
//定义排序的方式,这个定义的方式需要注意cmp后面没有(),operator后面使用了()而不是<等(但是在其他文章中看到可以使用<,但是我使用了之后有点错误),结束的}后面需要加上;
struct cmp{
       bool operator () (ListNode* a, ListNode* b)
       {
           return a->val > b->val;
       }
   };
priority_queue<ListNode*, vector<ListNode*>, cmp> q;

相关链接

优先级队列的用法(基本)
这个是最基本的方法说明

题解

使用了优先队列进行存储和自动排序,然后保存到一个全新的链表中。
用一个大小为K的最小堆(用优先队列+自定义降序实现)(优先队列就是大顶堆,队头元素最大,自定义为降序后,就变成小顶堆,队头元素最小),先把K个链表的头结点放入堆中,每次取堆顶元素,然后将堆顶元素所在链表的下一个结点加入堆中。

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:

    struct cmp{
        bool operator () (ListNode* a, ListNode* b)
        {
            return a->val > b->val;
        }
    };
    ListNode* mergeKLists(vector<ListNode*>& lists) {
    	//定义优先队列
        priority_queue<ListNode*, vector<ListNode*>, cmp> q;
		// 默认 priority_queue 是大顶堆, 这个题目中要使用小顶堆, 额外传入重载之后的比较函数
        // 第一个参数代表 priority_queue 中存储的数据类型
        // 第二个参数代表 priority_queue 底层使用的容器,第三个参数代表自己自定义的比较参数


        // 将 k 个链表的头结点加入最小堆,放入堆中的数据已经按照从小到大进行了排序
        for(ListNode* t:lists)
        {
            if(t!=nullptr)
            {
                q.push(t);
            }
        }

        //定义存储数据的新链表
        ListNode* prehead = new ListNode(),*p = prehead;
		
		//根据优先队列中存储的各个链表的头节点自动比较大小,输出小的值存储到新的链表中,并把最小值的下一个节点输入到优先队列中
        while(q.size())
        {
            ListNode* t = q.top();
            q.pop();
            p->next = t;
            if(t->next!=nullptr)
            {
                q.push(t->next);
                // 再次放入优先队列q中,这样每次取出来的链表都是最小的那一个
            }
            p = p->next;
        }

        return prehead->next;

    }
};

知识点

将 k 个链表的头结点加入最小堆

第一种:

// 将 k 个链表的头结点加入最小堆
for(ListNode* t:lists)
{
    if(t!=nullptr)
    {
        q.push(t);
    }
}

第二种:将每个list[i]的第一个节点送入堆中

for (int i = 0; i < lists.size(); ++i)
{
	heap.push(lists[i]);
}

其他解题链接

算法导论第三版第六章 合并K个有序链表的三种解法(最小堆法和分治递归法)

要实现合并K个升序链表,我们可以考虑使用分治法,将K个链表划分为两个子问题,分别合并这两个子问题,然后不断递归下去。 具体实现过程如下: 1. 将K个链表按照长度平均划分为两个子问题,每个子问题递归调用合并函数,直到只剩下一个链表或两个链表。 2. 合并两个链表的过程可以使用归并排序中的合并函数,将两个链表合并为一个升序链表。 3. 将合并后的链表返回,然后递归回去继续合并两个子问题的结果。 Java代码实现如下: ``` public ListNode mergeKLists(ListNode[] lists) { if (lists == null || lists.length == 0) { return null; } return mergeKLists(lists, 0, lists.length - 1); } private ListNode mergeKLists(ListNode[] lists, int left, int right) { if (left == right) { return lists[left]; } int mid = (left + right) / 2; ListNode l1 = mergeKLists(lists, left, mid); ListNode l2 = mergeKLists(lists, mid + 1, right); return mergeTwoLists(l1, l2); } private ListNode mergeTwoLists(ListNode l1, ListNode l2) { if (l1 == null) { return l2; } if (l2 == null) { return l1; } if (l1.val < l2.val) { l1.next = mergeTwoLists(l1.next, l2); return l1; } else { l2.next = mergeTwoLists(l1, l2.next); return l2; } } ``` 其中,`mergeKLists` 函数是递归调用的入口函数,它接收一个 `ListNode` 数组作为参数,表示要合并的K个链表。在函数中,我们首先判断链表数组是否为空或长度为0,如果是,则返回 `null`。否则,我们调用 `mergeKLists` 函数,将链表数组划分为两个子问题,然后递归调用 `mergeKLists` 函数,继续划分子问题,直到只剩下一个链表或两个链表。 在 `mergeKLists` 函数中,我们使用归并排序的思想,将两个链表合并为一个升序链表。具体实现是在 `mergeTwoLists` 函数中,它接收两个链表作为参数,递归调用自身,将两个链表合并为一个升序链表
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值