ATFX:美国2月未季调核心CPI年率录得3.8%,低于前值0.1个百分点

美国2月核心CPI和PCE物价指数数据显示通胀压力减轻,非农就业报告表明劳动力市场强劲,支持美元指数反弹。然而,考虑到失业率和美联储政策,美元指数可能面临回调风险。技术分析显示美元指数有上涨潜力,但市场预期美联储可能提前降息带来不确定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ATFX汇市:据美国劳工部数据,美国2月未季调核心CPI年率,最新值3.8%,前值为3.9%,预期值3.7%,最新值低于前值0.1个百分点,意味着高通胀问题正在逐步缓解,最新值高于预期值,意味着高通胀缓解的速度比预期的要慢。如果不剔除食品和能源价格对CPI数据的影响,观察名义CPI年率的话(也就是美国2月未季调CPI年率),最新值为3.2%,前值和预期值均为3.1%,最新值高于前值和预期值0.1个百分点,意味着食品或者能源价格对通胀率的上升起到了助推作用。比如能源成本,今年1月份的降幅为-4.6%,2月份降幅收窄至-1.9%,对CPI增速产生提升作用。食品方面,1月份的价格增幅为2.6%,2月份降低至2.2%,没有助推CPI年率升高。住房、汽车、医疗保健的同比价格增幅均有不同程度的回落。受美国CPI数据发布影响,汇市出现明显波动:美元指数在数据发布后的5分钟内,先由102.84跳涨至103.13,随后在15分钟内跌至102.72,形成过山车行情。行情对CPI数据的反应,意味着市场人士将美国2月未季调核心CPI年率的下降看做是利多美元指数的因素,但这种利多因素不足以在中长期内对美指形成提振。

在这里插入图片描述

▲ATFX图

2月29日,美国商务部发布了美国1月核心PCE物价指数年率数据,最新值2.8%,前值2.9%,预期值2.8%,最新值低于前值0.1个百分点,与昨日公布的美国2月未季调核心CPI年率与前值的差值相同。PCE数据和CPI数据相互印证,意味着美国的高通胀问题确实在持续缓解(剔除能源和食品价格影响的前提下)。

上周五发布的美国非农就业报告显示,美国2月季调后非农就业人口新增27.5万人,高于前值22.9万人,远高于预期值的新增20万人,意味着美国劳动力市场的需求依旧非常旺盛。美国2月失业率最新值3.9%,高于预期值和前值3.7%,但仍满足5%以下的健康标准。失业率和通胀率存在逻辑关系,当失业率较低且薪资收入正增长时,潜在的消费需求就会上升,通胀率预期较为乐观。当失业率较高且薪资收入负增长时,潜在的消费需求就会下降,通胀率预期较为悲观。以目前美国3.9%的失业率来看,美国的潜在通胀可能不会很快下降。对于美联储来说,劳动力市场需求越旺盛,潜在通胀率越高,则维持限制性利率越有必要,降息的时间点更要向后推迟。这一逻辑链条对美元指数形成显著提振。

在这里插入图片描述

▲ATFX图

上图为美元指数日线级别走势图。技术角度看,开始于2月14日的下跌波段已经与中长期回归线重合,昨日收盘后重合部分确定形成底分形支撑结构,后市看涨。以中短期回归线的指向来看,本轮反弹可能会使得美元指数重新站上104关口。如果宏观经济环境配合,美指甚至可能刷新2月份新高。需要提醒的是,目前市场的主流预期仍然是“美联储将提前降息”,所以美指短期反弹结束后继续下破中长期的回归线的可能性仍然存在。

ATFX风险提示、免责条款、特别声明:市场有风险,投资需谨慎。以上内容仅代表分析师个人观点,不构成任何操作建议。请勿将本报告视为唯一参考依据。在不同时期,分析师的观点可能发生变化,更新内容不会另行通知。

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值