赛时百度了线性回归的公式抄过去了,但是听说三分也能做,于是来写一下三分的做法。
三分的值是公差d,想要求出方差,还差个首项。代入d到式子里去,然后展开一下,发现是个二次函数,这样就能确定最优的首项a1的值是多少了。
然后随便写了写,结果被卡精度了。。。。wa了好多发。。
于是细细优化了一下推的式子,能用int的都用int了,然后尽量减少除法的使用次数。
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1e6 + 5, mod = 1e9 + 7;
int a[N];
int n;
int sum;
double f(double d)
{
double ret = 0;
double a1 = -(n - 1) * 1.0 / 2 * d + sum * 1.0 / n;
for (int i = 1; i <= n; i++)
{
double x = a1 + (i - 1) * d;
ret += (a[i] - x) * (a[i] - x);
}
return ret;
}
void solve()
{
cin >> n;
sum = 0;
for (int i = 1; i <= n; i++)
{
scanf("%lld", &a[i]);
sum += a[i];
}
double l = -1e9, r = 1e9;
int k = 100;
while(k--)
{
double lmid = l + (r - l) / 3;
double rmid = l + (r - l) / 3 * 2;
double fl = f(lmid);
double fr = f(rmid);
if (fl < fr) r = rmid;
else l = lmid;
}
// cout << l << " " << r << "\n";
printf("%.15lf\n", f(l));
}
signed main()
{
// ios::sync_with_stdio(0);
// cin.tie(0);
int tt = 1;
cin >> tt;
while (tt--) solve();
return 0;
}