逆序对(不知道的自行百度)
POJ3067 Japan
这道题目,当初看的一头雾水,不知道这是逆序对的问题更别提用树状数组来解决。(这道题目我既然说了是逆序对的问题,一定有不少同学想去尝试双重循环,你大可去试试!!)
这道题目说白了就是一道求直线交点的个数的题目,可自行在纸上写写画画,按照我的解题思路去想一下这个过程
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<iostream>
using namespace std;
const int MAXN = 1002;
int c[MAXN];
int N, M, K;
struct Node
{
int a, b;
} node[MAXN * MAXN];
bool cmp(Node a, Node b)
{
return a.a != b.a ? a.a < b.a : a.b < b.b;//这个地方就是想将每条路按x从小到达排序,若x相同,按y从小到大排序</span>
}
int lowbit(int x)
{
return -x & x;
}
void add(int i, int val)
{
while (i <= M)
{
c[i] += val;
i += lowbit(i);
}
}
//前i项和
int sum(int i)
{
int s = 0;
while (i)
{
s += c[i];
i -= lowbit(i);
}
return s;
}
int main()
{
int T;
scanf("%d", &T);
for (int iCase = 1; iCase <= T; iCase++)
{
scanf("%d%d%d", &N, &M, &K);
for (int i = 1; i <= K; i++)
{
scanf("%d%d", &node[i].a, &node[i].b);
}
sort(node + 1, node + 1 + K, cmp); //排序
memset(c, 0, sizeof(c));
long long ans = 0;
add(node[1].b, 1);
for (int i = 2; i <= K; i++)
{
add(node[i].b, 1);
ans += sum(M) - sum(node[i].b);//统计比node[i].b大的点个数,O(log M)时间
}
printf("Test case %d: %I64d\n", iCase, ans);
}
return 0;
}
记每条告诉公路为(x,y), 即东岸的第x个城市与西岸的第y个城市修一条路。当两条路有交点时,满足(x1-x2)*(y1-y2) < 0。所以,将每条路按x从小到达排序,若x相同,按y从小到大排序。 然后按排序后的公路用树状数组在线更新,求y的逆序数之 和 即为交点个数。
上面说的可能有点难理解,详细说明如下。
记第i条边的端点分别为xi,yi。
由于x是从小到大排序的,假设当前我们在处理第k条边,那么第1~k-1条边的x必然是小于(等于时候暂且不讨论)第k条边的 x 的,那么前k-1条边中,与第k条边相交的边的y值必然大于yk的,所以此时我们只需要求出在前k-1条边中有多少条边的y值在区间[yk, M]即可,也就是求yk的逆序数,M为西岸城市个数,即y的最大值。 所以就将问题转化成区间求和的问题,树状数组解决。当两条边的x相同时,我们记这两条边的y值分别为ya,yb(ya<yb),我们先处理(x,ya),再处理(x,yb),原因很明显,因为当x相同时,这两条边是认为没有交点的,若先处理(x,yb),那么下次处理(x,ya)时,(x,ya)就会给(x,yb)增加一个逆序,也就是将这两条边做相交处理了。