HDU 1176 免费馅饼 动态规划


Problem Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:

为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
 

Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
 

Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。

 

Sample Input
  
  
6 5 1 4 1 6 1 7 2 7 2 8 3 0
 

Sample Output
  
  
4


本题模型为数塔

即为:

第0秒                       5                         (这里的数字指的是第N秒可能到达的位置坐标)
第1秒                     4 5 6
第2秒                   3 4 5 6 7
第3秒                 2 3 4 5 6 7 8
第4秒               1 2 3 4 5 6 7 8 9
第5秒             0 1 2 3 4 5 6 7 8 9 10
第6秒             0 1 2 3 4 5 6 7 8 9 10
这样就可以看出怎么动态规划了,第i秒第j的位置始终存放这从此位置可得到的最大馅饼数,那么在0秒的5位置处就是最大可得到的馅饼数
开始一直是往下推 一直WA  原来是模型没有理解:在三角数塔的两边也可能掉落馅饼,但不可能接得住 所以该点的dp值应为0;

而逆推最不会出现这种情况:只要输出dp[0][5]即可;(0秒的其他dp可能大于它 ,但不考虑作为answer)

顺推代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int dp[100011][12];
int max(int a,int b,int c)
{
	if(a<b)
		a=b;
	return a>c?a:c;
}
int main()
{
	int a,b,m,n;
	int i,j;
	int max1;
	while(scanf("%d",&m)!=EOF)
	{
		if(m==0)
			break;
		max1=0;
		n=1;
		memset(dp,0,sizeof(dp));
		while(m--)
		{
			cin>>a>>b;
			if(b<5&&(a<5-b||a>5+b))        //关键 三角形两边的馅饼不考虑
			dp[b][a+1]=0;                   //所有的位置都右移一次 (不用判断下面j=0的情况..)
			else
			dp[b][a+1]++;
			if(b>n)
				n=b;                    //找到最大时间 
		}
		for(i=1;i<=n;i++)
			for(j=1;j<=11;j++)
			{
				dp[i][j]=dp[i][j]+max(dp[i-1][j-1],dp[i-1][j],dp[i-1][j+1]);		 //数塔模型。	
				if(dp[i][j]>max1)
					max1=dp[i][j];
			}
			printf("%d\n",max1);
	}
	return 0;
}

逆推代码:

#include <stdio.h>
#include <string.h>
int a[100005][11];
int max(int a,int b)
{
	if (a>b)
		return a;
	else
		return b;
}
int main()
{
	int n,i,j,x,t,maxi;
	while (scanf("%d",&n)!=EOF&&n)
	{
		memset(a,0,sizeof(a));
		maxi=0;
		for (i=0;i<n;i++)
		{
			scanf("%d%d",&x,&t);
			a[t][x]++;
			if (t>maxi)
				maxi=t;
		}
		for (i=maxi-1;i>=0;i--)
		{
			for (j=0;j<=10;j++)
			{
				if (j==0)
					a[i][j]+=max(a[i+1][j],a[i+1][j+1]);
				else
					a[i][j]+=max(max(a[i+1][j-1],a[i+1][j]),a[i+1][j+1]);
			}
		}
		printf("%d\n",a[0][5]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值