Problem Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input
6 5 1 4 1 6 1 7 2 7 2 8 3 0
Sample Output
4
本题模型为数塔
即为:
第0秒 5 (这里的数字指的是第N秒可能到达的位置坐标) 第1秒 4 5 6 第2秒 3 4 5 6 7 第3秒 2 3 4 5 6 7 8 第4秒 1 2 3 4 5 6 7 8 9 第5秒 0 1 2 3 4 5 6 7 8 9 10 第6秒 0 1 2 3 4 5 6 7 8 9 10 这样就可以看出怎么动态规划了,第i秒第j的位置始终存放这从此位置可得到的最大馅饼数,那么在0秒的5位置处就是最大可得到的馅饼数开始一直是往下推 一直WA 原来是模型没有理解:在三角数塔的两边也可能掉落馅饼,但不可能接得住 所以该点的dp值应为0;
而逆推最不会出现这种情况:只要输出dp[0][5]即可;(0秒的其他dp可能大于它 ,但不考虑作为answer)
顺推代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int dp[100011][12];
int max(int a,int b,int c)
{
if(a<b)
a=b;
return a>c?a:c;
}
int main()
{
int a,b,m,n;
int i,j;
int max1;
while(scanf("%d",&m)!=EOF)
{
if(m==0)
break;
max1=0;
n=1;
memset(dp,0,sizeof(dp));
while(m--)
{
cin>>a>>b;
if(b<5&&(a<5-b||a>5+b)) //关键 三角形两边的馅饼不考虑
dp[b][a+1]=0; //所有的位置都右移一次 (不用判断下面j=0的情况..)
else
dp[b][a+1]++;
if(b>n)
n=b; //找到最大时间
}
for(i=1;i<=n;i++)
for(j=1;j<=11;j++)
{
dp[i][j]=dp[i][j]+max(dp[i-1][j-1],dp[i-1][j],dp[i-1][j+1]); //数塔模型。
if(dp[i][j]>max1)
max1=dp[i][j];
}
printf("%d\n",max1);
}
return 0;
}
逆推代码:
#include <stdio.h>
#include <string.h>
int a[100005][11];
int max(int a,int b)
{
if (a>b)
return a;
else
return b;
}
int main()
{
int n,i,j,x,t,maxi;
while (scanf("%d",&n)!=EOF&&n)
{
memset(a,0,sizeof(a));
maxi=0;
for (i=0;i<n;i++)
{
scanf("%d%d",&x,&t);
a[t][x]++;
if (t>maxi)
maxi=t;
}
for (i=maxi-1;i>=0;i--)
{
for (j=0;j<=10;j++)
{
if (j==0)
a[i][j]+=max(a[i+1][j],a[i+1][j+1]);
else
a[i][j]+=max(max(a[i+1][j-1],a[i+1][j]),a[i+1][j+1]);
}
}
printf("%d\n",a[0][5]);
}
return 0;
}