1 题目
请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):
实现 MyQueue 类:
void push(int x)将元素 x 推到队列的末尾int pop()从队列的开头移除并返回元素int peek()返回队列开头的元素boolean empty()如果队列为空,返回true;否则,返回false
说明:
- 你 只能 使用标准的栈操作 —— 也就是只有
push to top,peek/pop from top,size, 和is empty操作是合法的。 - 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
示例 1:
输入: ["MyQueue", "push", "push", "peek", "pop", "empty"] [[], [1], [2], [], [], []] 输出: [null, null, null, 1, 1, false] 解释: MyQueue myQueue = new MyQueue(); myQueue.push(1); // queue is: [1] myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue) myQueue.peek(); // return 1 myQueue.pop(); // return 1, queue is [2] myQueue.empty(); // return false
提示:
1 <= x <= 9- 最多调用
100次push、pop、peek和empty - 假设所有操作都是有效的 (例如,一个空的队列不会调用
pop或者peek操作)
进阶:
- 你能否实现每个操作均摊时间复杂度为
O(1)的队列?换句话说,执行n个操作的总时间复杂度为O(n),即使其中一个操作可能花费较长时间。
2 代码实现
一点也不会敲,不知道怎么弄。
typedef struct {
int* stk;
int stkSize;
int stkCapacity;
} Stack;
Stack* stackCreate(int cpacity) {
Stack* ret = malloc(sizeof(Stack));
ret->stk = malloc(sizeof(int) * cpacity);
ret->stkSize = 0;
ret->stkCapacity = cpacity;
return ret;
}
void stackPush(Stack* obj, int x) {
obj->stk[obj->stkSize++] = x;
}
void stackPop(Stack* obj) {
obj->stkSize--;
}
int stackTop(Stack* obj) {
return obj->stk[obj->stkSize - 1];
}
bool stackEmpty(Stack* obj) {
return obj->stkSize == 0;
}
void stackFree(Stack* obj) {
free(obj->stk);
}
typedef struct {
Stack* inStack;
Stack* outStack;
} MyQueue;
MyQueue* myQueueCreate() {
MyQueue* ret = malloc(sizeof(MyQueue));
ret->inStack = stackCreate(100);
ret->outStack = stackCreate(100);
return ret;
}
void in2out(MyQueue* obj) {
while (!stackEmpty(obj->inStack)) {
stackPush(obj->outStack, stackTop(obj->inStack));
stackPop(obj->inStack);
}
}
void myQueuePush(MyQueue* obj, int x) {
stackPush(obj->inStack, x);
}
int myQueuePop(MyQueue* obj) {
if (stackEmpty(obj->outStack)) {
in2out(obj);
}
int x = stackTop(obj->outStack);
stackPop(obj->outStack);
return x;
}
int myQueuePeek(MyQueue* obj) {
if (stackEmpty(obj->outStack)) {
in2out(obj);
}
return stackTop(obj->outStack);
}
bool myQueueEmpty(MyQueue* obj) {
return stackEmpty(obj->inStack) && stackEmpty(obj->outStack);
}
void myQueueFree(MyQueue* obj) {
stackFree(obj->inStack);
stackFree(obj->outStack);
}
- 栈:是 “后进先出”(LIFO)的结构,就像叠盘子,最后放上去的要先拿下来
- 队列:是 “先进先出”(FIFO)的结构,就像排队,先到的先处理
题目要求用栈来实现队列的功能,这就需要一些技巧了。
一、整体思路
这里用了两个栈来模拟队列:
inStack(输入栈):专门用来接收新加入的元素outStack(输出栈):专门用来提供出队和查看队首的操作
关键逻辑:当需要出队或查看队首时,如果输出栈为空,就把输入栈的所有元素转移到输出栈中。这样输出栈的顶部就是最早加入的元素(符合队列特性)。
二、代码拆解
1. 栈的实现(辅助结构)
因为 C 语言没有内置栈,所以先实现一个简单的栈结构:
typedef struct {
int* stk; // 存储栈元素的数组
int stkSize; // 当前栈中元素的数量
int stkCapacity; // 栈的最大容量
} Stack;
栈的基本操作:
stackCreate:创建一个栈(初始化内存)stackPush:向栈顶添加元素(stkSize 加 1)stackPop:移除栈顶元素(stkSize 减 1,不用真的删除数据)stackTop:返回栈顶元素(取 stk [stkSize-1])stackEmpty:判断栈是否为空(stkSize 是否为 0)stackFree:释放栈占用的内存
2. 队列的实现(核心结构)
用两个栈组成队列:
typedef struct {
Stack* inStack; // 输入栈
Stack* outStack; // 输出栈
} MyQueue;
3. 关键函数解析
(1)创建队列 myQueueCreate
MyQueue* myQueueCreate() {
MyQueue* ret = malloc(sizeof(MyQueue));
ret->inStack = stackCreate(100); // 创建输入栈
ret->outStack = stackCreate(100); // 创建输出栈
return ret;
}
- 分配队列的内存
- 初始化两个栈(容量暂设为 100)
(2)转移元素 in2out(核心逻辑)
void in2out(MyQueue* obj) {
while (!stackEmpty(obj->inStack)) { // 当输入栈不为空时
// 把输入栈的栈顶元素压入输出栈
stackPush(obj->outStack, stackTop(obj->inStack));
// 移除输入栈的栈顶元素
stackPop(obj->inStack);
}
}
- 作用:把输入栈的所有元素 “倒” 到输出栈中
- 举例:输入栈有 [1,2,3](1 在底,3 在顶),转移后输出栈变成 [3,2,1](3 在底,1 在顶),此时输出栈的顶部就是最早加入的 1
(3)入队操作 myQueuePush
void myQueuePush(MyQueue* obj, int x) {
stackPush(obj->inStack, x); // 直接把元素压入输入栈
}
- 非常简单,因为输入栈就是用来接收新元素的
- 比如:调用
myQueuePush(q, 1),输入栈就变成 [1]
(4)出队操作 myQueuePop
int myQueuePop(MyQueue* obj) {
if (stackEmpty(obj->outStack)) { // 如果输出栈为空
in2out(obj); // 先把输入栈的元素转移过来
}
int x = stackTop(obj->outStack); // 取输出栈的顶部元素(队首)
stackPop(obj->outStack); // 移除输出栈的顶部元素
return x;
}
- 步骤:
- 检查输出栈是否为空,如果空就转移输入栈的元素
- 取输出栈的顶部元素(这是最早加入的元素)
- 移除这个元素并返回
- 举例:
- 输入栈有 [1,2,3],输出栈为空
- 调用
myQueuePop时,先执行in2out,输出栈变成 [3,2,1](1 在顶) - 取出 1 并移除,输出栈变成 [3,2]
(5)查看队首 myQueuePeek
int myQueuePeek(MyQueue* obj) {
if (stackEmpty(obj->outStack)) { // 和出队类似,先检查输出栈
in2out(obj);
}
return stackTop(obj->outStack); // 只返回顶部元素,不移除
}
(6)判断队列是否为空 myQueueEmpty
bool myQueueEmpty(MyQueue* obj) {
// 只有两个栈都为空时,队列才为空
return stackEmpty(obj->inStack) && stackEmpty(obj->outStack);
}
(7)释放队列 myQueueFree
void myQueueFree(MyQueue* obj) {
stackFree(obj->inStack); // 释放输入栈
stackFree(obj->outStack); // 释放输出栈
free(obj); // 释放队列本身
}
三、举例理解整个流程
假设我们执行以下操作:
- 创建队列
q = myQueueCreate() - 入队:
myQueuePush(q, 1)→ 输入栈 [1],输出栈 [] - 入队:
myQueuePush(q, 2)→ 输入栈 [1,2],输出栈 [] - 查看队首:
myQueuePeek(q)→ 输出栈为空,执行in2out,输入栈变空,输出栈 [2,1],返回 1 - 出队:
myQueuePop(q)→ 输出栈顶部是 1,移除后输出栈 [2],返回 1 - 入队:
myQueuePush(q, 3)→ 输入栈 [3],输出栈 [2] - 出队:
myQueuePop(q)→ 输出栈不为空,直接取 2,输出栈变空,返回 2 - 出队:
myQueuePop(q)→ 输出栈为空,执行in2out,输入栈的 3 转移到输出栈,输出栈 [3],取 3 返回
四、复杂度分析
- 时间复杂度:
push和empty是 O (1)(直接操作)pop和peek是均摊 O (1)(每个元素最多转移一次,整体平均下来是 O (1))
- 空间复杂度:O (n)(需要存储 n 个元素)
161

被折叠的 条评论
为什么被折叠?



