题意
地图的x轴的上方为海,下方为陆地,海中有n个小岛,坐标为(x,y)。有一种雷达,能探测到的范围为以r为半径的圆。问海岸线上至少造多少雷达可以把所有的小岛都包含在内。注意雷达是建在海岸线上的,也就是x轴上的。
题解
贪心
用勾股定理可以求出覆盖第i个点的圆心的区间,即在这个范围中圆心一定能覆盖到点i。
我们先求出覆盖每个点的圆心的区间,这样我们把n个点转换成了n个区间,问题也转换成求用最少点覆盖所有区间,意思是用最少的点使每个区间中至少有一个点。
解决这个问题,用贪心算法。
很容易知道,从左往右,每个圆要尽可能多的包含点,这样出来的结果自然是最小的。
我们关注每个区间的左端点和右端点,并分别对它们进行由小到大的排序。
每一次选择一个最左的区间,将其恰好覆盖。最小右端点所在的区间被定义成“最左的区间”。在这个右端点这里设立雷达,即以其为圆心,这样的圆心是能保证圆心左边再没有未覆盖的区间,又是最靠右的点,所以它不仅能完成旧任务,还能最大程度的推进探测范围。
接下来看看哪些区间包含了圆心,这些区间也可以被这个圆心覆盖。这里判断的方法是看区间的左端点是否在圆心的左边,如果是,又因为它的右端点一定在圆心右边(右端点也按小到大排,如果小于圆心——目前未覆盖的最小的右端点,则它应该成为本次的圆心),所以它就会包含圆心。
就这样做下去,直到全部区间被覆盖。
输出-1的情况只有一种,就是某个y大于了r。
代码
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const double eps=1e-5;
const int maxn=1010;
int n,r;
bool v[maxn];//区间i被未覆盖为true,被覆盖为false
struct A
{
int id;
double a;
}le[maxn],ri[maxn];
bool cmp(A a1,A a2)
{
return a1.a<a2.a;
}
int main()
{
int ci=0;
while(scanf("%d%d",&n,&r),n!=0)
{
bool can=true;
for(int i=1;i<=n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
double k=sqrt(r*r-y*y);
le[i].id=ri[i].id=i;
le[i].a=x-k;ri[i].a=x+k;
if(y>r) can=false;
}
if(can==false)
{
printf("Case %d: -1\n",++ci);
continue;
}
sort(le+1,le+n+1,cmp);//le从小到大排序
sort(ri+1,ri+n+1,cmp);//ri从小到大排序
int ans=0,cl=1,cr=1;
memset(v,true,sizeof(v));
while(cl<=n)
{
ans++;
//确定一个最小右端点作为圆心o
while(v[ri[cr].id]==false) cr++;
v[ri[cr].id]=false;
double o=ri[cr].a;
//它能覆盖的区间有哪些呢?
for(;cl<=n;cl++)
{
if(le[cl].a-o<=eps) v[le[cl].id]=false;//所有左端点在o左边的区间都被o覆盖
else break;//后面的左端点都会在o右边
}
}
printf("Case %d: %d\n",++ci,ans);
}
return 0;
}