洛谷2868 [USACO07DEC]观光奶牛Sightseeing Cows(0/1分数规划)(SPFA)

题目

给定一张有向图,每个节点有一个权值fun[i],每条边有一个权值time[i]。求图中的一个环,使环上各点权值之和除以各边权值之和最大。

题解

0/1分数规划+spfa判负环
把题意公式化,得到求\frac{ \sum_{i=1} ^{t}fun[i]*x[i] }{\sum_{i=1}^{t}time[i]*x[i]}最大,其中x[i]表示选或不选。

\frac{ \sum_{i=1} ^{t}fun[i]*x[i] }{\sum_{i=1}^{t}time[i]*x[i]}=L,那么有\sum_{i=1}^{t} (fun[i]-L*time[i])*x[i]=0

假设我们要求到最大的这个分式值,相当于就是要求最大的L。可以证明这个分式值满足二分性,即L满足二分性。

在二分时,如果有\sum_{i=1}^{t}(fun[i]-L*time[i])*x[i] > 0那么L可以有更大的值。回到题意上,相当于是有一个以fun[i]-L*time[i]为新边权的正环。考虑到正环不好判断,或者用floyd求一个最大环?太麻烦了,把公式转成这样

\sum_{i=1}^{t}(L*time[i]-fun[i])*x[i] < 0

相当于以L*time[i]-fun[i]为新边权,判断是否存在负环,如果存在L存在更大的值。

公式转化到这我们的SPFA终于可以闪亮登场了[撒花][撒花][撒花]。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const double eps=1e-4;
const int maxn=1010,maxm=5010;

int n,m;
int a[maxn];

struct E{int y,c,next;}e[maxm<<1];int len=0,last[maxn];
void ins(int x,int y,int c)
{
    e[++len]=(E){y,c,last[x]};last[x]=len;
}

double d[maxn];
int q[maxn],cnt[maxn];bool v[maxn];
bool check(double mid)//spfa有负环  debug:mid-double
{
    int head=0,tail=0;
    for(int i=1;i<=n;i++)
    {
        q[tail++]=i;
        d[i]=0;//
        cnt[i]=0;
        v[i]=true;
    }
    while(head!=tail)
    {
        int x=q[head++];if(head==1006) head=0;
        v[x]=false;
        for(int k=last[x];k;k=e[k].next)
        {
            int y=e[k].y;
            if(d[y]>d[x]+(mid*e[k].c-a[x]))
            {
                d[y]=d[x]+(mid*e[k].c-a[x]);
                cnt[y]=cnt[x]+1;
                if(cnt[y]>=n) return true;
                if(!v[y])
                {
                    q[tail++]=y;if(tail==1006) tail=0;
                    v[y]=true;
                }
            }
        }
    }
    return false;
}

int main()
{
    double sum=0;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    for(int i=1;i<=m;i++)
    {
        int x,y,c;
        scanf("%d%d%d",&x,&y,&c);
        ins(x,y,c);//ins(y,x,c);
        sum+=c;
    }
    double l=0,r=sum,ans;
    while(l-r<=eps)//l<=r
    {
        double mid=(l+r)/2;
        if(check(mid)) ans=mid,l=mid+eps;
        else r=mid-eps;
    }
    printf("%.2lf\n",ans);
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个长度为 $n$ 的书架,每本书有一个高度 $h_i$。现在你可以进行以下两种操作: - 将一本书放在书架的最左边或最右边,花费为 $c_1$。 - 将一本高度为 $h_i$ 的书放在一本高度为 $h_j$ 的书的上面,花费为 $c_2$。 现在你需要将书架上的书按照高度从小到大排列,求最小花费。 输入格式 第一行包含三个整数 $n,c_1,c_2$。 第二行包含 $n$ 个整数 $h_i$。 输出格式 输出一个整数,表示最小花费。 数据范围 $1\leq n\leq 200,1\leq c_1,c_2\leq 10^9,1\leq h_i\leq 10^9$ 输入样例 5 1 2 3 1 4 2 5 输出样例 6 算法1 (动态规划) $O(n^2)$ 首先考虑一个朴素的 dp,设 $f_{i,j}$ 表示前 $i$ 本书已经排好序,第 $i+1$ 本书放在第 $j$ 个位置的最小花费。 状态转移方程为: $$ f_{i,j}=\min\{f_{i-1,k}+c_1\}+\begin{cases}&\text{if }h_{i+1}>h_j\\c_2&\text{otherwise}\end{cases} $$ 其中 $k$ 取遍 $1\sim i$,表示将第 $i+1$ 本书放在第 $k$ 个位置。 时间复杂度 $O(n^3)$ C++ 代码 算法2 (单调队列优化) $O(n^2)$ 考虑优化上述 dp,发现状态转移方程中的 $\min$ 操作可以用单调队列优化,具体来说,我们维护一个单调递增的队列 $q$,其中 $q_i$ 表示第 $i$ 个位置的最小花费,那么对于状态 $f_{i,j}$,我们只需要找到 $q$ 中第一个大于等于 $f_{i-1,k}+c_1$ 的位置 $p$,然后 $f_{i,j}=q_p+\begin{cases}&\text{if }h_{i+1}>h_j\\c_2&\text{otherwise}\end{cases}$。 时间复杂度 $O(n^2)$ C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值