判断一棵树是不是完全二叉树

分析
假设一棵树是完全二叉树,层数为K,那么可以得到以下结论:
1.前k-1层节点肯定都是饱和的,即到达了最大值;
2.第k-1层不一定所有的节点都有孩子节点,如果有孩子节点,那么一定是左孩子节点。

所以我们要先找到第一个孩子不全的节点,如果只有右孩子节点,那么一定不是完全二叉树。
找到第一个不饱和节点后,后续所有节点不能有孩子节点。

步骤
1.按照层序遍历的方式,找到第一个不饱和节点,判断其孩子是不是左孩子,不是直接返回false;
2.从该节点之后所有节点不能有孩子。如果有孩子,一定不是完全二叉树。

代码

/**
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
 class Solution {
    public boolean isCompleteTree(TreeNode root) {
        boolean isComleteTree() {
        if(root == null) {
            return true;
        }
        //树非空,就找其第一个不饱和节点,即只有一个孩子节点
        //按层序遍历的方式找
        Queue<BTNode> q = new LinkedList<>();
        q.offer(root);
        boolean isLeafOrLeft = false;   //设置标志位,找到第一个不饱和节点后置为true。
        while (!q.isEmpty()) {
            BTNode cur = q.poll();
            if (isLeafOrLeft) {   //满足条件后后序节点不能有孩子节点
                if (cur.left != null || cur.right != null) {
                    return false;
                }
            } else {   //不满足条件就一直按照层序遍历的方式找第一个不饱和节点
                if (cur.left != null && cur.right != null) {
                    q.offer(cur.left);
                    q.offer(cur.right);
                } else if (cur.left != null) {
                    //找到第一个不饱和节点后,将标志位置为true
                    q.offer(cur.left);
                    isLeafOrLeft = true;
                } else if (cur.right != null) {
                    //此时只有右孩子,一定不是完全二叉树
                    return false;
                } else {
                    //cur是叶子节点,后面所有节点不能有孩子了
                    isLeafOrLeft = true;
                }
            }
        }
        return true;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值