mapreduce实践篇

mapreduce实践篇

MAPREDUCE实例编写及编码规范

编程规范

  1. 用户编写的程序分成三个部分:Mapper,Reducer,Driver(提交 运行mr程序的客户端)
  2. Mapper的输入数据是KV对的形式(KV类型可以自定义)
  3. Mapper的输出数据是KV对的形式(KV的类型可自定义)
  4. Mapper中的业务逻辑写在map()方法中
  5. map()方法(maptask进程)对每一个

一个简单的Mapreduce—–WordCount

package com.mingming.bigdata.wordcount;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * @author Mingming
 * @Description
 * @Date Created in 21:41 2017/12/19
 * @Modificd By
 */
public class WordCount {

    //定义一个Mapper类
    static class WordCountMapper extends Mapper<LongWritable,Text,Text,IntWritable>{
        Text wordbean = new Text();
        IntWritable count = new IntWritable(1);
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            //map的生命周期:框架每传一次数据就被调用一次
            //key 这一行的起始点的文件中的偏移量
            //value 这一行的内容
            //拿到这一行的内容,转换为String
            String line = value.toString();
            //分切出各个单词
            String[] words = line.split("\t");
            //遍历数组输出单词
            for (String word:words
                 ) {
                wordbean.set(word);
                context.write(wordbean,count);
            }
        }
    }

    //定义一个Reducer类
    static class WordCountReducer extends Reducer<Text,IntWritable,Text,IntWritable>{
        /**
         * 框架没传递进来一个kv组,reduce方法就被调用一次
         * @param key
         * @param values
         * @param context
         * @throws IOException
         * @throws InterruptedException
         */
        IntWritable counts = new IntWritable();
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            int count = 0;
            for (IntWritable value:values){
                count+=value.get();
            }
            counts.set(count);
            context.write(key,counts);
        }
}
   public static void main(String[] args) throws IOException {
        //把业务逻辑的相关信息(那个是mapper,那个是reducer,要处理的数据在那里,输出的结果放在那里***)描述成一个job对象。
       //把这个描述好的job提交给集群去运行
       Configuration conf = new Configuration();
       Job wcjob = Job.getInstance(conf);
       //指定我这个jar所在的位置
       //wcjob.setJar("/home/hadoop/wordcount.jar");
       wcjob.setJarByClass(WordCount.class);
       wcjob.setMapperClass(WordCountMapper.class);
       wcjob.setReducerClass(WordCountReducer.class);
       //设定mapper的输出kv类型
       wcjob.setMapOutputKeyClass(Text.class);
       wcjob.setMapOutputValueClass(IntWritable.class);
       //设置reducer的输出kv类型
       wcjob.setOutputKeyClass(Text.class);
       wcjob.setOutputValueClass(IntWritable.class);
       //指定要处理的数据所在的位置
       FileInputFormat.setInputPaths(wcjob,"hdfs://zookeeper1:9000/datainput");
       FileOutputFormat.setOutputPath(wcjob,new Path("hdfs://zookeeper1:9000/wordcount/output"));
    }


}

MAPREDUCE程序运行模式

本地运行模式:

  1. mapreduce程序时被提交给LocalJobRunner在本地以单进程的形式运行

  2. 而处理的数据以及结果可以在本地文件系统,也可以在hdfs上

  3. 怎样实现本地运行?写一个程序,不要带集群的配置文件(本质上是你的mr程序的conf中是否有mapreduce.framework.name=local以及yarn.resourcemanager.hostname参数)

  4. 本地模式非常方便于进行业务逻辑的debug,只要在eclipse中打断点就可。

  5. 如果在windows下想运行本地模式来测试程序逻辑,需要在windows*中配置环境变量:

    %HADOOP_HOME*% = d:/hadoop-2.6.1*

    %PATH% = %HADOOP_HOME%\bin

    并且要将d:/hadoop-2.6.1*的lib**和bin**目录替换成windows**平台编译的版本*

集群运行模式:

  1. 将mapreduce程序提交给yarn集群resourcemanager,分发到很多的节点上并发执行

  2. 处理的数据和输出结果应该位于hdfs文件系统

  3. 提交集群的实现步骤:

    A、将程序打成JAR包,然后在集群的任意一个节点上用hadoop命令启动

    ​ $ hadoop jar wordcount.jar cn.itcast.bigdata.mrsimple.WordCountDriverinputpath outputpath

    B、直接在linux的eclipse中运行main方法

    (项目中要带参数:mapreduce.framework.name=yarn以及yarn的两个基本配置)

    C、如果要在windows的eclipse中提交job给集群,则要修改YarnRunner类

    MAPREDUCE中的排序初步

    对日志数据中的上下行流量信息汇总,并输出按照总量流量倒序排序的结果

1363157985066137262305000-fd-d7-A4-72-bb;CMCC120.196.100.822427248124681200

分析:

基本思路:实现自定义的bean来封装流量信息,并将bean作为map输出的key来传输

MR程序在处理数据的过程中会对数据排序(map输出的kv对传输到reduce之前,会排序),排序的依据是map输出的key

所以,我们如果要实现自己的排序规则,则可以考虑将排序因素放到key中,让key实现接口:WritableComparable

然后重写key的compareTo方法。

实现

自定义的bean

package com.mingming.bigdata.flowsum;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
 * @author Mingming
 * @Description
 * @Date Created in 15:09 2017/12/4
 * @Modificd By
 */
public class FlowBean implements Writable{

    private long upFlow;
    private long dFlow;
    private long sumFlow;
    //反序列化时需要反射调用空参构造函数
    public FlowBean() {
    }

    public FlowBean(long upFlow, long dFlow) {
        this.upFlow = upFlow;
        this.dFlow = dFlow;
        this.sumFlow = upFlow + dFlow;
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getdFlow() {
        return dFlow;
    }

    public void setdFlow(long dFlow) {
        this.dFlow = dFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    /**
     * 序列化方法
     * @param dataOutput
     * @throws IOException
     */
    @Override
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeLong(upFlow);
        dataOutput.writeLong(dFlow);
        dataOutput.writeLong(sumFlow);
    }

    /**
     * 反序列方法
     * 注意反序列化的方法和序列化的顺序一致
     * @param dataInput
     * @throws IOException
     */
    @Override
    public void readFields(DataInput dataInput) throws IOException {
       upFlow =  dataInput.readLong();
        dFlow = dataInput.readLong();
        sumFlow = dataInput.readLong();
    }

    @Override
    public String toString() {
        return "FlowBean{" +
                "upFlow=" + upFlow +
                ", dFlow=" + dFlow +
                ", sumFlow=" + sumFlow +
                '}';
    }
}

mapReduce程序

package com.mingming.bigdata.flowsum;

import com.mingming.bigdata.wcdemo.WorcCountMapper;
import com.mingming.bigdata.wcdemo.WordCountDriver;
import com.mingming.bigdata.wcdemo.WordCountReducer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @author Mingming
 * @Description
 * @Date Created in 15:08 2017/12/4
 * @Modificd By
 */
public class FlowCount {

    static class FlowCountMapper extends Mapper<LongWritable,Text,Text,FlowBean>{

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            //将一行内容转成String
            String line = value.toString();
            //切分字段
            String[] fields = line.split("\t");
            //取出手机号
            String phoneNumber = fields[1];
            //取出上行下行流量
            long upFlow = Long.parseLong(fields[fields.length-3]);
            long dFlow = Long.parseLong(fields[fields.length-2]);
            context.write(new Text(phoneNumber),new FlowBean(upFlow,dFlow));

        }
    }

    static class  FlowCountReducer extends Reducer<Text,FlowBean,Text,FlowBean>{

        @Override
        protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {

            long sumUpFlow = 0;
            long sumDFlow = 0;
            //遍历所有的bean,将其中的所有上行流量,下行流量分别累加
            for (FlowBean bean: values){
                sumUpFlow += bean.getUpFlow();
                sumDFlow += bean.getdFlow();
            }
            FlowBean result = new FlowBean(sumUpFlow,sumDFlow);
            context.write(key,result);
        }
    }





    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        /*job.setJar("/home/lib/wc.jar");*/
        //指定本程序的jarbao所在的本地路径
        job.setJarByClass(FlowCount.class);

        //指定本业务要使用的mapper的业务类
        job.setMapperClass(FlowCountMapper.class);
        //指定本业务要使用的Reducer业务类
        job.setReducerClass(FlowCountReducer.class);
        //指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);
        //指定最终输出的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        //指定job输入的原始文件所在的目录
        FileInputFormat.setInputPaths(job,new Path(args[0]));
        //指定job的输出结果所在目录
        FileOutputFormat.setOutputPath(job,new Path(args[1]));
        //将job中配置的相关参数,以及job所用的java类的jar包,提交给yarn运行
       /* job.submit();*/
        boolean res = job.waitForCompletion(true);
        System.exit(res?0:1);
    }
}

Mapreduce中的分区Partitioner

需求:

根据不同的地址,分配到不同的文件中

分析:

mapreduce中会将map输出的kv对,按照相同的key分组,然后分发给不同的reducetask默认的分发规则为:根据key的hashcode%reducetask数来分发。所以:如果要按照我们自己的需求来进行分组,则需要改写数据分发的组件partitioner,自定义一个Custompartitionre继承抽象类:partitioner。然后在job对象中,设置自定义的partitioner:job.setPartitionerClass(CustomPartitioner.class)

实现

/**
 * 定义自己的从map到reduce之间的数据(分组)分发规则 按照手机号所属的省份来分发(分组)ProvincePartitioner
 * 默认的分组组件是HashPartitioner
 * 
 * @author
 * 
 */
public class ProvincePartitioner extends Partitioner<Text, FlowBean> {

    static HashMap<String, Integer> provinceMap = new HashMap<String, Integer>();

    static {

        provinceMap.put("135", 0);
        provinceMap.put("136", 1);
        provinceMap.put("137", 2);
        provinceMap.put("138", 3);
        provinceMap.put("139", 4);

    }

    @Override
    public int getPartition(Text key, FlowBean value, int numPartitions) {

        Integer code = provinceMap.get(key.toString().substring(0, 3));

        return code == null ? 5 : code;
    }

}

自定义inputFormat

需求:

无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应的解决方法。

分析:

小文件的优化无非以下几种方式:

  1. 在数据采集的时候,就将小文件或小批数据合成大文件在上传到HDFS
  2. 在业务处理之前,在HDFS上使用mapreduce程序对小文件进行合并
  3. 在mapreduce处理时,可采用combineInputFormat提高效率

实现:

本节实现的上述第二种方式:

自定义一个InputFormat

改写RecordReader,实现一次读取一个完整文件分装为KV

在输出时使用SequenceFileOutputFormat输出合并文件。

代码如下:

自定义InputFormat

public class WholeFileInputFormat extends
        FileInputFormat<NullWritable, BytesWritable> {
    //设置每个小文件不可分片,保证一个小文件生成一个key-value键值对
    @Override
    protected boolean isSplitable(JobContext context, Path file) {
        return false;
    }

    @Override
    public RecordReader<NullWritable, BytesWritable> createRecordReader(
            InputSplit split, TaskAttemptContext context) throws IOException,
            InterruptedException {
        WholeFileRecordReader reader = new WholeFileRecordReader();
        reader.initialize(split, context);
        return reader;
    }
}

自定义RecordReader

class WholeFileRecordReader extends RecordReader<NullWritable, BytesWritable> {
    private FileSplit fileSplit;
    private Configuration conf;
    private BytesWritable value = new BytesWritable();
    private boolean processed = false;

    @Override
    public void initialize(InputSplit split, TaskAttemptContext context)
            throws IOException, InterruptedException {
        this.fileSplit = (FileSplit) split;
        this.conf = context.getConfiguration();
    }

    @Override
    public boolean nextKeyValue() throws IOException, InterruptedException {
        if (!processed) {
            byte[] contents = new byte[(int) fileSplit.getLength()];
            Path file = fileSplit.getPath();
            FileSystem fs = file.getFileSystem(conf);
            FSDataInputStream in = null;
            try {
                in = fs.open(file);
                IOUtils.readFully(in, contents, 0, contents.length);
                value.set(contents, 0, contents.length);
            } finally {
                IOUtils.closeStream(in);
            }
            processed = true;
            return true;
        }
        return false;
    }

    @Override
    public NullWritable getCurrentKey() throws IOException,
            InterruptedException {
        return NullWritable.get();
    }

    @Override
    public BytesWritable getCurrentValue() throws IOException,
            InterruptedException {
        return value;
    }

    @Override
    public float getProgress() throws IOException {
        return processed ? 1.0f : 0.0f;
    }

    @Override
    public void close() throws IOException {
        // do nothing
    }
}

定义mapreduce处理流程

public class SmallFilesToSequenceFileConverter extends Configured implements
        Tool {
    static class SequenceFileMapper extends
            Mapper<NullWritable, BytesWritable, Text, BytesWritable> {
        private Text filenameKey;

        @Override
        protected void setup(Context context) throws IOException,
                InterruptedException {
            InputSplit split = context.getInputSplit();
            Path path = ((FileSplit) split).getPath();
            filenameKey = new Text(path.toString());
        }

        @Override
        protected void map(NullWritable key, BytesWritable value,
                Context context) throws IOException, InterruptedException {
            context.write(filenameKey, value);
        }
    }

    @Override
    public int run(String[] args) throws Exception {
        Configuration conf = new Configuration();
        System.setProperty("HADOOP_USER_NAME", "hdfs");
        String[] otherArgs = new GenericOptionsParser(conf, args)
                .getRemainingArgs();
        if (otherArgs.length != 2) {
            System.err.println("Usage: combinefiles <in> <out>");
            System.exit(2);
        }

        Job job = Job.getInstance(conf,"combine small files to sequencefile");
//      job.setInputFormatClass(WholeFileInputFormat.class);
        job.setOutputFormatClass(SequenceFileOutputFormat.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(BytesWritable.class);
        job.setMapperClass(SequenceFileMapper.class);
        return job.waitForCompletion(true) ? 0 : 1;
    }

    public static void main(String[] args) throws Exception {
        int exitCode = ToolRunner.run(new SmallFilesToSequenceFileConverter(),
                args);
        System.exit(exitCode);

    }
}

定义mapreduce处理流程

public class SmallFilesToSequenceFileConverter extends Configured implements Tool {
    static class SequenceFileMapper extends
            Mapper<NullWritable, BytesWritable, Text, BytesWritable> {
        private Text filenameKey;

        @Override
        protected void setup(Context context) throws IOException,
                InterruptedException {
            InputSplit split = context.getInputSplit();
            Path path = ((FileSplit) split).getPath();
            filenameKey = new Text(path.toString());
        }

        @Override
        protected void map(NullWritable key, BytesWritable value,
                Context context) throws IOException, InterruptedException {
            context.write(filenameKey, value);
        }
    }

    @Override
    public int run(String[] args) throws Exception {
        Configuration conf = new Configuration();
        System.setProperty("HADOOP_USER_NAME", "hdfs");
        String[] otherArgs = new GenericOptionsParser(conf, args)
                .getRemainingArgs();
        if (otherArgs.length != 2) {
            System.err.println("Usage: combinefiles <in> <out>");
            System.exit(2);
        }

        Job job = Job.getInstance(conf,"combine small files to sequencefile");
//      job.setInputFormatClass(WholeFileInputFormat.class);
        job.setOutputFormatClass(SequenceFileOutputFormat.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(BytesWritable.class);
        job.setMapperClass(SequenceFileMapper.class);
        return job.waitForCompletion(true) ? 0 : 1;
    }

    public static void main(String[] args) throws Exception {
        int exitCode = ToolRunner.run(new SmallFilesToSequenceFileConverter(),
                args);
        System.exit(exitCode);

    }
}

自定义outputFormat

需求:

现有一些原始日志需要做增强解析处理,流程:

  1. 从原始日志文件中读取数据
  2. 根据日志中的一个URL字段的外部知识库中获取信息增强到原始日志。
  3. 如果成功增强,则输出到增强目录;如果增强失败,则抽取原始数据中URL字段输出到带爬清单目录。

分析:

程序的关键点是要在一个mapreduce程序中根据数据的不同输出两类结果到不同目录,这类灵活的输出需求可以通过自定义的outputformat来实现。

实现:

实现要点:

  1. 在mapreduce中访问外部资源
  2. 自定义outputformat,改写其中的recordwriter,改写具体输出数据的方法write()

代码实现如下:

数据库获取数据的工作:

public class DBLoader {

    public static void dbLoader(HashMap<String, String> ruleMap) {
        Connection conn = null;
        Statement st = null;
        ResultSet res = null;

        try {
            Class.forName("com.mysql.jdbc.Driver");
            conn = DriverManager.getConnection("jdbc:mysql://hdp-node01:3306/urlknowledge", "root", "root");
            st = conn.createStatement();
            res = st.executeQuery("select url,content from urlcontent");
            while (res.next()) {
                ruleMap.put(res.getString(1), res.getString(2));
            }
        } catch (Exception e) {
            e.printStackTrace();

        } finally {
            try{
                if(res!=null){
                    res.close();
                }
                if(st!=null){
                    st.close();
                }
                if(conn!=null){
                    conn.close();
                }

            }catch(Exception e){
                e.printStackTrace();
            }
        }
    }


    public static void main(String[] args) {
        DBLoader db = new DBLoader();
        HashMap<String, String> map = new HashMap<String,String>();
        db.dbLoader(map);
        System.out.println(map.size());
    }
}

自定义一个outputformat

public class LogEnhancerOutputFormat extends FileOutputFormat<Text, NullWritable>{


    @Override
    public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext context) throws IOException, InterruptedException {


        FileSystem fs = FileSystem.get(context.getConfiguration());
        Path enhancePath = new Path("hdfs://hdp-node01:9000/flow/enhancelog/enhanced.log");
        Path toCrawlPath = new Path("hdfs://hdp-node01:9000/flow/tocrawl/tocrawl.log");

        FSDataOutputStream enhanceOut = fs.create(enhancePath);
        FSDataOutputStream toCrawlOut = fs.create(toCrawlPath);


        return new MyRecordWriter(enhanceOut,toCrawlOut);
    }



    static class MyRecordWriter extends RecordWriter<Text, NullWritable>{

        FSDataOutputStream enhanceOut = null;
        FSDataOutputStream toCrawlOut = null;

        public MyRecordWriter(FSDataOutputStream enhanceOut, FSDataOutputStream toCrawlOut) {
            this.enhanceOut = enhanceOut;
            this.toCrawlOut = toCrawlOut;
        }

        @Override
        public void write(Text key, NullWritable value) throws IOException, InterruptedException {

            //有了数据,你来负责写到目的地  —— hdfs
            //判断,进来内容如果是带tocrawl的,就往待爬清单输出流中写 toCrawlOut
            if(key.toString().contains("tocrawl")){
                toCrawlOut.write(key.toString().getBytes());
            }else{
                enhanceOut.write(key.toString().getBytes());
            }

        }

        @Override
        public void close(TaskAttemptContext context) throws IOException, InterruptedException {

            if(toCrawlOut!=null){
                toCrawlOut.close();
            }
            if(enhanceOut!=null){
                enhanceOut.close();
            }

        }


    }
}

开发mapreduce处理流程

/**
 * 这个程序是对每个小时不断产生的用户上网记录日志进行增强(将日志中的url所指向的网页内容分析结果信息追加到每一行原始日志后面)
 * 
 * @author
 * 
 */
public class LogEnhancer {

    static class LogEnhancerMapper extends Mapper<LongWritable, Text, Text, NullWritable> {

        HashMap<String, String> knowledgeMap = new HashMap<String, String>();

        /**
         * maptask在初始化时会先调用setup方法一次 利用这个机制,将外部的知识库加载到maptask执行的机器内存中
         */
        @Override
        protected void setup(org.apache.hadoop.mapreduce.Mapper.Context context) throws IOException, InterruptedException {

            DBLoader.dbLoader(knowledgeMap);

        }

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

            String line = value.toString();

            String[] fields = StringUtils.split(line, "\t");

            try {
                String url = fields[26];

                // 对这一行日志中的url去知识库中查找内容分析信息
                String content = knowledgeMap.get(url);

                // 根据内容信息匹配的结果,来构造两种输出结果
                String result = "";
                if (null == content) {
                    // 输往待爬清单的内容
                    result = url + "\t" + "tocrawl\n";
                } else {
                    // 输往增强日志的内容
                    result = line + "\t" + content + "\n";
                }

                context.write(new Text(result), NullWritable.get());
            } catch (Exception e) {

            }
        }

    }

    public static void main(String[] args) throws Exception {

        Configuration conf = new Configuration();

        Job job = Job.getInstance(conf);

        job.setJarByClass(LogEnhancer.class);

        job.setMapperClass(LogEnhancerMapper.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        // 要将自定义的输出格式组件设置到job中
        job.setOutputFormatClass(LogEnhancerOutputFormat.class);

        FileInputFormat.setInputPaths(job, new Path(args[0]));

        // 虽然我们自定义了outputformat,但是因为我们的outputformat继承自fileoutputformat
        // 而fileoutputformat要输出一个_SUCCESS文件,所以,在这还得指定一个输出目录
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        job.waitForCompletion(true);
        System.exit(0);

    }

}

自定义GroupingComparator

需求:

有如下订单:

订单id商品ID成交金额
Order_0000001pdt_01222.8

现在需要求出每一个订单中成交金额最大的一笔交易

分析:

  1. 订单“订单id和成交金额”作为key,可以将map阶段读取到的所有订单数据按照id分区,按照订单金额排序,发送到reduce
  2. 在reduce端利用GroupingComparator将订单id相同的kv聚合成组,然后取第一个即最大值。

实现:

自定义groupingcomparator

/**
 * 用于控制shuffle过程中reduce端对kv对的聚合逻辑
 * @author duanhaitao@itcast.cn
 *
 */
public class ItemidGroupingComparator extends WritableComparator {

    protected ItemidGroupingComparator() {

        super(OrderBean.class, true);
    }


    @Override
    public int compare(WritableComparable a, WritableComparable b) {
        OrderBean abean = (OrderBean) a;
        OrderBean bbean = (OrderBean) b;

        //将item_id相同的bean都视为相同,从而聚合为一组
        return abean.getItemid().compareTo(bbean.getItemid());
    }
}

定义订单信息bean:

/**
 * 订单信息bean,实现hadoop的序列化机制
 * @author duanhaitao@itcast.cn
 *
 */
public class OrderBean implements WritableComparable<OrderBean>{
    private Text itemid;
    private DoubleWritable amount;

    public OrderBean() {
    }
    public OrderBean(Text itemid, DoubleWritable amount) {
        set(itemid, amount);
    }

    public void set(Text itemid, DoubleWritable amount) {

        this.itemid = itemid;
        this.amount = amount;

    }

    public Text getItemid() {
        return itemid;
    }

    public DoubleWritable getAmount() {
        return amount;
    }

    @Override
    public int compareTo(OrderBean o) {
        int cmp = this.itemid.compareTo(o.getItemid());
        if (cmp == 0) {

            cmp = -this.amount.compareTo(o.getAmount());
        }
        return cmp;
    }

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeUTF(itemid.toString());
        out.writeDouble(amount.get());

    }

    @Override
    public void readFields(DataInput in) throws IOException {
        String readUTF = in.readUTF();
        double readDouble = in.readDouble();

        this.itemid = new Text(readUTF);
        this.amount= new DoubleWritable(readDouble);
    }


    @Override
    public String toString() {
        return itemid.toString() + "\t" + amount.get();
    }
}

编写mapreduce流程:

/**
 * 利用secondarysort机制输出每种item订单金额最大的记录
 * @author duanhaitao@itcast.cn
 *
 */
public class SecondarySort {

    static class SecondarySortMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable>{

        OrderBean bean = new OrderBean();

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

            String line = value.toString();
            String[] fields = StringUtils.split(line, "\t");

            bean.set(new Text(fields[0]), new DoubleWritable(Double.parseDouble(fields[1])));

            context.write(bean, NullWritable.get());

        }

    }

    static class SecondarySortReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable>{


        //在设置了groupingcomparator以后,这里收到的kv数据 就是:  <1001 87.6>,null  <1001 76.5>,null  .... 
        //此时,reduce方法中的参数key就是上述kv组中的第一个kv的key:<1001 87.6>
        //要输出同一个item的所有订单中最大金额的那一个,就只要输出这个key
        @Override
        protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
            context.write(key, NullWritable.get());
        }
    }


    public static void main(String[] args) throws Exception {

        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        job.setJarByClass(SecondarySort.class);

        job.setMapperClass(SecondarySortMapper.class);
        job.setReducerClass(SecondarySortReducer.class);


        job.setOutputKeyClass(OrderBean.class);
        job.setOutputValueClass(NullWritable.class);

        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        //指定shuffle所使用的GroupingComparator类
        job.setGroupingComparatorClass(ItemidGroupingComparator.class);
        //指定shuffle所使用的partitioner类
        job.setPartitionerClass(ItemIdPartitioner.class);

        job.setNumReduceTasks(3);

        job.waitForCompletion(true);

    }

}

Mapreduce中的DistributedCache应用

Map端join案例

需求:

实现两个‘表’的join操作,其中一个数据量较小,一个表很大,这种情景在实际中非常常见,比如“订单日志‘join”产品信息“

分析:

—原理阐述

适用于关联表中有小表的情况

可以将小表分发到所有的map节点,这样,map节点就可以在本地对自己所读到的大表数据进行join并输出最终结果。

可以大大提高join的操作并发度,加快处理速度。

–示例:先在mpper类中预先定义好小表,进行join

–并用distributedcache机制将小表的数据分发到每一个maptask执行节点,从而每一个maptask节点可以从本地加载到小表数据,进而在本地即可实现join.

实现

public class TestDistributedCache {
    static class TestDistributedCacheMapper extends Mapper<LongWritable, Text, Text, Text>{
        FileReader in = null;
        BufferedReader reader = null;
        HashMap<String,String> b_tab = new HashMap<String, String>();
        String localpath =null;
        String uirpath = null;

        //是在map任务初始化的时候调用一次
        @Override
        protected void setup(Context context) throws IOException, InterruptedException {
            //通过这几句代码可以获取到cache file的本地绝对路径,测试验证用
            Path[] files = context.getLocalCacheFiles();
            localpath = files[0].toString();
            URI[] cacheFiles = context.getCacheFiles();


            //缓存文件的用法——直接用本地IO来读取
            //这里读的数据是map task所在机器本地工作目录中的一个小文件
            in = new FileReader("b.txt");
            reader =new BufferedReader(in);
            String line =null;
            while(null!=(line=reader.readLine())){

                String[] fields = line.split(",");
                b_tab.put(fields[0],fields[1]);

            }
            IOUtils.closeStream(reader);
            IOUtils.closeStream(in);

        }

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

            //这里读的是这个map task所负责的那一个切片数据(在hdfs上)
             String[] fields = value.toString().split("\t");

             String a_itemid = fields[0];
             String a_amount = fields[1];

             String b_name = b_tab.get(a_itemid);

             // 输出结果  1001  98.9    banan
             context.write(new Text(a_itemid), new Text(a_amount + "\t" + ":" + localpath + "\t" +b_name ));

        }
    }
    public static void main(String[] args) throws Exception {

        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        job.setJarByClass(TestDistributedCache.class);

        job.setMapperClass(TestDistributedCacheMapper.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);

        //这里是我们正常的需要处理的数据所在路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        //不需要reducer
        job.setNumReduceTasks(0);
        //分发一个文件到task进程的工作目录
        job.addCacheFile(new URI("hdfs://hadoop-server01:9000/cachefile/b.txt"));

        //分发一个归档文件到task进程的工作目录
//      job.addArchiveToClassPath(archive);

        //分发jar包到task节点的classpath下
//      job.addFileToClassPath(jarfile);

        job.waitForCompletion(true);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值