A_ice

蒟蒻,做的题很少,努力中

第十周练习 1006 月之数

Problem Description

当寒月还在读大一的时候,他在一本武林秘籍中(据后来考证,估计是计算机基础,狂汗-ing),发现了神奇的二进制数。
如果一个正整数m表示成二进制,它的位数为n(不包含前导0),寒月称它为一个n二进制数。所有的n二进制数中,1的总个数被称为n对应的月之数。
例如,3二进制数总共有4个,分别是4(100)、5(101)、6(110)、7(111),他们中1的个数一共是1+2+2+3=8,所以3对应的月之数就是8。

Input

给你一个整数T,表示输入数据的组数,接下来有T行,每行包含一个正整数 n(1<=n<=20)。

Output

对于每个n ,在一行内输出n对应的月之数。

Sample Input

3
1
2
3

Sample Output

1
3
8

这算递归嘛?

总之……各种折腾,先是折腾阶乘和组合的写法,然后发现数字溢出了……OTZ

最后算是做出来了,感觉不错,学到新东西了。

#include<stdio.h>
__int64 jc(int i)
{
	__int64 sum=1;
	int j;
	for(j=2;j<=i;j++)
		sum*=j;
	return sum;	
}
__int64 pl(int a,int b)
{
	__int64 sum;
	int c;
	c=b-a;
	sum=jc(b)/(jc(c)*jc(a));
	return sum;
}
int main()
{
	int n,i,a;
	__int64 sum;
	while(scanf("%d",&n)!=EOF)
	{
		while(n--)
		{
			scanf("%d",&a);
			if(a==0)
			{
				sum=0;
			}
			else 
			{
				sum=1;
				int j=0;
				for(i=1;i<a;i++)
				{
					sum+=pl(i,a-1)*i;
					j+=pl(i,a-1);
				}
				sum+=j;
			}
		printf("%I64d\n",sum);	
		}
	}
	return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/A_ice_/article/details/49933991
个人分类: ——新手上路——
上一篇第十周练习 1005 不容易系列之(3)—— LELE的RPG难题
下一篇第十周练习 1007 悼念512汶川大地震遇难同胞——老人是真饿了
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭