二叉树总结

本文深入介绍了二叉树的概念,包括树的基本结构、二叉树的定义和特性,以及特殊类型的二叉树如满二叉树和完全二叉树。文章详细阐述了二叉树的顺序存储和链式存储结构,并讲解了堆的实现,包括堆的调整、创建、插入、删除等操作。最后,讨论了二叉树的遍历方法,包括前序、中序、后序和层序遍历。
摘要由CSDN通过智能技术生成

1.树概念及结构
2.二叉树概念及结构
3.二叉树顺序结构及实现
4.二叉树链式结构及实现

1、树的概念及结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:每个结点有零个或多 个子结点;没有父结点的结点称为根结点;每一个非根结点有且只有一个父结点;除了根结点外,每个子结 点可以分为多个不相交的子树
二叉树是一棵树,且每个节点都不能有多于两个的儿子,且二叉树的子树有左右之分,次序不能颠倒。

1.2 树的表示
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,如:双亲表示法,孩子表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子兄弟表示法。

typedef int DataType;
struct Node
{
	struct Node* _firstChild1; // 第一个孩子结点
	struct Node* _pNextBrother; // 指向其下一个兄弟结点
	DataType _data; // 结点中的数据域
};

在这里插入图片描述
2.二叉树概念及结构
2.1概念
一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
二叉树的特点:

  1. 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。
  2. 二叉树的子树有左右之分,其子树的次序不能颠倒。

2.2 特殊的二叉树

满二叉树:深度为k且具有(2^k)-1个结点的二叉树。即满二叉树中的每一层上的结点数都是最大的结点数。
完全二叉树:深度为k具有n个结点的二叉树,当且仅当每一个结点与深度为k的满二叉树中的编号从1至n的结点一一对应。

2.3二叉树的性质

在二叉树中的第i层上至多有2^(i-1)个结点(i>=1)。
深度为k的二叉树至多有2^k - 1个节点(k>=1)。
包含n个结点的二叉树的高度至少为log2 (n+1)
对任何一棵二叉树T,如果其叶结点数目为n0,度为2的节点数目为n2,则n0=n2+1。

性质1:二叉树第i层上的结点数目最多为 2^(i-1)(i>=1)。

证明:下面用"数学归纳法"进行证明。
(01) 当i=1时,第i层的节点数目为2^(i-1)(i>=1)。因为第1层上只有一个根结点,所以命题成立。
(02) 假设当i>1,第i层的节点数目为2^(i-1)。这个是根据(01)推断出来的!
下面根据这个假设,推断出"第(i+1)层的节点数目为2^i"即可。
由于二叉树的每个结点至多有两个孩子,故"第(i+1)层上的结点数目" 最多是 “第i层的结点数目的2倍”。即,第(i+1)层上的结点数目最大值=2×2^(i-1)= 2^i。
故假设成立,原命题得证!

性质2:深度为k的二叉树至多有2^(k)-1个结点(k≥1)

证明:在具有相同深度的二叉树中,当每一层都含有最大结点数时,其树中结点数最多。利用"性质1"可知,深度为k的二叉树的结点数至多为:
20+21+22+…+2(k-1)=2^k-1
故原命题得证!

性质3:包含n个结点的二叉树的高度至少为log2 (n+1)

证明:根据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值