题目描述
有形如: a x 3 + b x 2 + c x 1 + d x 0 = 0 ax^3+bx^2+cx^1+dx^0=0 ax3+bx2+cx1+dx0=0 这样的一个一元三次方程。给出该方程中各项的系数( a , b , c , d a,b,c,d a,b,c,d均为实数),并约定该方程存在三个不同实根(根的范围在 − 100 -100 −100至 100 100 100之间),且根与根之差的绝对值 ≥ 1 \ge 1 ≥1。要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后 2 2 2位。
提示:记方程 f ( x ) = 0 f(x)=0 f(x)=0,若存在 2 2 2个数 x 1 x_1 x1和 x 2 x_2 x2,且 x 1 < x 2 x_1<x_2 x1<x2 , f ( x 1 ) × f ( x 2 ) < 0 f(x_1) \times f(x_2)<0 f(x1)×f(x2)<0,则在 ( x 1 , x 2 ) (x_1,x_2) (x1,x2)之间一定有一个根。
输入格式
一行, 4 4 4个实数 A , B , C , D A,B,C,D A,B,C,D。
输出格式
一行, 3 3 3个实根,并精确到小数点后 2 2 2位。
输入输出样例
输入 #1 复制
1 -5 -4 20
输出 #1 复制
-2.00 2.00 5.00
思路
难得的一道水题,因为题中说根和根之差的绝对值 ≥ 1 \ge 1 ≥1,也就是说,在一段长度为 1 1 1 的区间中,不会有两个根。那么枚举这段区间在按照题中的方法做就是了
代码
#include<bits/stdc++.h>
using namespace std;
double a,b,c,d;
double f(double x){
return a*x*x*x+b*x*x+c*x+d;
}
int tot;//用于计数
int main()
{
cin>>a>>b>>c>>d;
for(int i=-100;i<=100;i++){//枚举区间[i,i+1)
if(tot>=3)//已经找到三个根
return 0;
if(f(i)==0){//如果i本身就是一个根
printf("%0.2lf ",double(i));
tot++;
continue;
}
if(f(i)*f(i+1)<0){//这段区间中有一个根
double l=i,r=i+1,m;
while(l+0.001<r){//因为要精确到2位小数,所以要算到3位小数
m=(l+r)/2;
if(f(l)*f(m)<0)//根在左边区间
r=m;
else//根在右边区间
l=m;
}
printf("%0.2lf ",l);
//因为r始终在(x1,x2)当中,所以根不在r
tot++;
}
}
//前面已经结束了,这里就不用了(我可能有点懒)
}