洛谷P1025数的划分题解--zhengjun

题目描述

将整数 n n n分成 k k k份,且每份不能为空,任意两个方案不相同(不考虑顺序)。

例如: n = 7 n=7 n=7 k = 3 k=3 k=3,下面三种分法被认为是相同的。

1 , 1 , 5 ; 1,1,5; 1,1,5;
1 , 5 , 1 ; 1,5,1; 1,5,1;
5 , 1 , 1. 5,1,1. 5,1,1.

问有多少种不同的分法。

输入格式

n , k n,k n,k ( 6 < n ≤ 200 6<n \le 200 6<n200 2 ≤ k ≤ 6 2 \le k \le 6 2k6)

输出格式

1 1 1个整数,即不同的分法。

输入输出样例
输入 #1 复制
7 3
输出 #1 复制
4
说明/提示

四种分法为:
1 , 1 , 5 1,1,5 1,1,5;
1 , 2 , 4 1,2,4 1,2,4;
1 , 3 , 3 1,3,3 1,3,3;
2 , 2 , 3 2,2,3 2,2,3.

思路

这道题呢,我个人认为有两种做法。
一种是暴搜,另一种正解是动态规划。

暴搜

搜索我就不多说了,看代码吧

#include<bits/stdc++.h>
using namespace std;
int n,m;
int ans;
inline void dfs(register int sum,register int t,register int l){//现在拼成了sum,用了t个数,l是前面用的最大的数
	if(sum>n)
	    return;
	if(sum==n){
		if(m==t)
		    ans++;
		return;
	}
	register int i;
	for(i=l;i<=n-sum-m+t+1;i++)
	    dfs(sum+i,t+1,i);
}
int main()
{
	cin>>n>>m;
	dfs(0,0,1);
	cout<<ans;
	return 0;
}

可是这样会 T T T 60 % 60\% 60%
下面是优化过的 d f s dfs dfs

#include<bits/stdc++.h>
using namespace std;
int n,m;
int ans;
void dfs(int l,int sum,int t)
{
	if(t>m)
	    return;
    if(t==m)
    {
        if(sum==n)
		    ans++;
        return;
    }
    for(int i=l;sum+i*(m-t)<=n;i++)
        dfs(i,sum+i,t+1);
}
int main()
{
    cin>>n>>m;
    dfs(1,0,0);
    cout<<ans;
    return 0;
}

其实没差多少,就是做了一些剪枝而已,也是能过的。

动态规划

f i , j f_{i,j} fi,j 表示 i i i分成 j j j 部分的方案数
那么,所有

f i , j = 0 ( i < j ) f_{i,j}=0 (i<j) fi,j=0(i<j)

f i , j = 1 ( i = j ) f_{i,j}=1 (i=j) fi,j=1(i=j)

然后,当 i > j i>j i>j
一种是 1 , ⋅ ⋅ ⋅ 1,··· 1,
         f i − 1 , j − 1 \ \ \ \ \ \ \ \ f_{i-1,j-1}         fi1,j1
另一种是没有 1 1 1 在里面(就是把每个数都减掉 1 1 1 之后的方案数,总共就减了 j j j )
         f i − j , j \ \ \ \ \ \ \ \ f_{i-j,j}         fij,j
所以,转移方程就是:

  1. f i , j = f i − 1 , j − 1 ( i ≤ j ) f_{i,j}=f_{i-1,j-1} (i\le j) fi,j=fi1,j1(ij)
  2. f i , j = f i − 1 , j − 1 + f i − j , j ( i > j ) f_{i,j}=f_{i-1,j-1}+f_{i-j,j} (i>j) fi,j=fi1,j1+fij,j(i>j)
代码
#include<bits/stdc++.h>
using namespace std;
int n,m;
int f[201][7];
int main()
{
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	    f[i][1]=1;
	for(int i=2;i<=n;i++)
	    for(int j=2;j<=m;j++)
	        if(i>j)
	            f[i][j]=f[i-1][j-1]+f[i-j][j];
	        else
	            f[i][j]=f[i-1][j-1];
	cout<<f[n][m];
	return 0;
}

谢谢–zhengjun

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A_zjzj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值