题目描述
将整数 n n n分成 k k k份,且每份不能为空,任意两个方案不相同(不考虑顺序)。
例如: n = 7 n=7 n=7, k = 3 k=3 k=3,下面三种分法被认为是相同的。
1
,
1
,
5
;
1,1,5;
1,1,5;
1
,
5
,
1
;
1,5,1;
1,5,1;
5
,
1
,
1.
5,1,1.
5,1,1.
问有多少种不同的分法。
输入格式
n , k n,k n,k ( 6 < n ≤ 200 6<n \le 200 6<n≤200, 2 ≤ k ≤ 6 2 \le k \le 6 2≤k≤6)
输出格式
1 1 1个整数,即不同的分法。
输入输出样例
输入 #1 复制
7 3
输出 #1 复制
4
说明/提示
四种分法为:
1
,
1
,
5
1,1,5
1,1,5;
1
,
2
,
4
1,2,4
1,2,4;
1
,
3
,
3
1,3,3
1,3,3;
2
,
2
,
3
2,2,3
2,2,3.
思路
这道题呢,我个人认为有两种做法。
一种是暴搜,另一种正解是动态规划。
暴搜
搜索我就不多说了,看代码吧
#include<bits/stdc++.h>
using namespace std;
int n,m;
int ans;
inline void dfs(register int sum,register int t,register int l){//现在拼成了sum,用了t个数,l是前面用的最大的数
if(sum>n)
return;
if(sum==n){
if(m==t)
ans++;
return;
}
register int i;
for(i=l;i<=n-sum-m+t+1;i++)
dfs(sum+i,t+1,i);
}
int main()
{
cin>>n>>m;
dfs(0,0,1);
cout<<ans;
return 0;
}
可是这样会
T
T
T 掉
60
%
60\%
60%
下面是优化过的
d
f
s
dfs
dfs
#include<bits/stdc++.h>
using namespace std;
int n,m;
int ans;
void dfs(int l,int sum,int t)
{
if(t>m)
return;
if(t==m)
{
if(sum==n)
ans++;
return;
}
for(int i=l;sum+i*(m-t)<=n;i++)
dfs(i,sum+i,t+1);
}
int main()
{
cin>>n>>m;
dfs(1,0,0);
cout<<ans;
return 0;
}
其实没差多少,就是做了一些剪枝而已,也是能过的。
动态规划
用
f
i
,
j
f_{i,j}
fi,j 表示
i
i
i分成
j
j
j 部分的方案数
那么,所有
f i , j = 0 ( i < j ) f_{i,j}=0 (i<j) fi,j=0(i<j)
f i , j = 1 ( i = j ) f_{i,j}=1 (i=j) fi,j=1(i=j)
然后,当
i
>
j
i>j
i>j 时
一种是
1
,
⋅
⋅
⋅
1,···
1,⋅⋅⋅
f
i
−
1
,
j
−
1
\ \ \ \ \ \ \ \ f_{i-1,j-1}
fi−1,j−1
另一种是没有
1
1
1 在里面(就是把每个数都减掉
1
1
1 之后的方案数,总共就减了
j
j
j )
f
i
−
j
,
j
\ \ \ \ \ \ \ \ f_{i-j,j}
fi−j,j
所以,转移方程就是:
- f i , j = f i − 1 , j − 1 ( i ≤ j ) f_{i,j}=f_{i-1,j-1} (i\le j) fi,j=fi−1,j−1(i≤j)
- f i , j = f i − 1 , j − 1 + f i − j , j ( i > j ) f_{i,j}=f_{i-1,j-1}+f_{i-j,j} (i>j) fi,j=fi−1,j−1+fi−j,j(i>j)
代码
#include<bits/stdc++.h>
using namespace std;
int n,m;
int f[201][7];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
f[i][1]=1;
for(int i=2;i<=n;i++)
for(int j=2;j<=m;j++)
if(i>j)
f[i][j]=f[i-1][j-1]+f[i-j][j];
else
f[i][j]=f[i-1][j-1];
cout<<f[n][m];
return 0;
}