洛谷P1025数的划分题解--zhengjun

本文探讨了将整数n分成k份的不同分法数量问题,介绍了两种解决策略:暴力搜索与动态规划。通过具体实例,如n=7,k=3的情况,展示了不同分法的计算过程,并提供了代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

将整数 n n n分成 k k k份,且每份不能为空,任意两个方案不相同(不考虑顺序)。

例如: n = 7 n=7 n=7 k = 3 k=3 k=3,下面三种分法被认为是相同的。

1 , 1 , 5 ; 1,1,5; 1,1,5;
1 , 5 , 1 ; 1,5,1; 1,5,1;
5 , 1 , 1. 5,1,1. 5,1,1.

问有多少种不同的分法。

输入格式

n , k n,k n,k ( 6 < n ≤ 200 6<n \le 200 6<n200 2 ≤ k ≤ 6 2 \le k \le 6 2k6)

输出格式

1 1 1个整数,即不同的分法。

输入输出样例
输入 #1 复制
7 3
输出 #1 复制
4
说明/提示

四种分法为:
1 , 1 , 5 1,1,5 1,1,5;
1 , 2 , 4 1,2,4 1,2,4;
1 , 3 , 3 1,3,3 1,3,3;
2 , 2 , 3 2,2,3 2,2,3.

思路

这道题呢,我个人认为有两种做法。
一种是暴搜,另一种正解是动态规划。

暴搜

搜索我就不多说了,看代码吧

#include<bits/stdc++.h>
using namespace std;
int n,m;
int ans;
inline void dfs(register int sum,register int t,register int l){//现在拼成了sum,用了t个数,l是前面用的最大的数
	if(sum>n)
	    return;
	if(sum==n){
		if(m==t)
		    ans++;
		return;
	}
	register int i;
	for(i=l;i<=n-sum-m+t+1;i++)
	    dfs(sum+i,t+1,i);
}
int main()
{
	cin>>n>>m;
	dfs(0,0,1);
	cout<<ans;
	return 0;
}

可是这样会 T T T 60 % 60\% 60%
下面是优化过的 d f s dfs dfs

#include<bits/stdc++.h>
using namespace std;
int n,m;
int ans;
void dfs(int l,int sum,int t)
{
	if(t>m)
	    return;
    if(t==m)
    {
        if(sum==n)
		    ans++;
        return;
    }
    for(int i=l;sum+i*(m-t)<=n;i++)
        dfs(i,sum+i,t+1);
}
int main()
{
    cin>>n>>m;
    dfs(1,0,0);
    cout<<ans;
    return 0;
}

其实没差多少,就是做了一些剪枝而已,也是能过的。

动态规划

f i , j f_{i,j} fi,j 表示 i i i分成 j j j 部分的方案数
那么,所有

f i , j = 0 ( i < j ) f_{i,j}=0 (i<j) fi,j=0(i<j)

f i , j = 1 ( i = j ) f_{i,j}=1 (i=j) fi,j=1(i=j)

然后,当 i > j i>j i>j
一种是 1 , ⋅ ⋅ ⋅ 1,··· 1,
         f i − 1 , j − 1 \ \ \ \ \ \ \ \ f_{i-1,j-1}         fi1,j1
另一种是没有 1 1 1 在里面(就是把每个数都减掉 1 1 1 之后的方案数,总共就减了 j j j )
         f i − j , j \ \ \ \ \ \ \ \ f_{i-j,j}         fij,j
所以,转移方程就是:

  1. f i , j = f i − 1 , j − 1 ( i ≤ j ) f_{i,j}=f_{i-1,j-1} (i\le j) fi,j=fi1,j1(ij)
  2. f i , j = f i − 1 , j − 1 + f i − j , j ( i > j ) f_{i,j}=f_{i-1,j-1}+f_{i-j,j} (i>j) fi,j=fi1,j1+fij,j(i>j)
代码
#include<bits/stdc++.h>
using namespace std;
int n,m;
int f[201][7];
int main()
{
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	    f[i][1]=1;
	for(int i=2;i<=n;i++)
	    for(int j=2;j<=m;j++)
	        if(i>j)
	            f[i][j]=f[i-1][j-1]+f[i-j][j];
	        else
	            f[i][j]=f[i-1][j-1];
	cout<<f[n][m];
	return 0;
}

谢谢–zhengjun

对于上的p1036题目,我们可以使用Python来解决。下面是一个可能的解法: ```python def dfs(nums, target, selected_nums, index, k, sum): if k == 0 and sum == target: return 1 if index >= len(nums) or k <= 0 or sum > target: return 0 count = 0 for i in range(index, len(nums)): count += dfs(nums, target, selected_nums + [nums[i]], i + 1, k - 1, sum + nums[i]) return count if __name__ == "__main__": n, k = map(int, input().split()) nums = list(map(int, input().split())) target = int(input()) print(dfs(nums, target, [], 0, k, 0)) ``` 在这个解法中,我们使用了深度优先搜索(DFS)来找到满足要求的列。通过递归的方式,我们遍历了所有可能的字组合,并统计满足条件的个。 首先,我们从给定的n和k分别表示字个和需要选取的字个。然后,我们输入n个字,并将它们存储在一个列表nums中。接下来,我们输入目标值target。 在dfs中,我们通过迭代index来选择字,并更新选取的字个k和当前总和sum。如果k等于0且sum等于target,我们就找到了一个满足条件的组合,返回1。如果index超出了列表长度或者k小于等于0或者sum大于target,说明当前组合不满足要求,返回0。 在循环中,我们不断递归调用dfs,将选取的字添加到selected_nums中,并将index和k更新为下一轮递归所需的值。最终,我们返回所有满足条件的组合个。 最后,我们在主程序中读入输入,并调用dfs,并输出结果。 这是一种可能的解法,但不一定是最优解。你可以根据题目要求和测试据进行调试和优化。希望能对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A_zjzj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值