洛谷P1039侦探推理题解--zhengjun

题目描述

明明同学最近迷上了侦探漫画《柯南》并沉醉于推理游戏之中,于是他召集了一群同学玩推理游戏。游戏的内容是这样的,明明的同学们先商量好由其中的一个人充当罪犯(在明明不知情的情况下),明明的任务就是找出这个罪犯。接着,明明逐个询问每一个同学,被询问者可能会说:

证词中出现的其他话,都不列入逻辑推理的内容。

明明所知道的是,他的同学中有 N N N 个人始终说假话,其余的人始终说真。

现在,明明需要你帮助他从他同学的话中推断出谁是真正的凶手,请记住,凶手只有一个!

输入格式

输入由若干行组成,第一行有三个整数, M ( 1 ≤ M ≤ 20 ) M(1≤M≤20) M(1M20) N ( 1 ≤ N ≤ M ) N(1≤N≤M) N(1NM) P ( 1 ≤ P ≤ 100 ) P(1≤P≤100) P(1P100);MM是参加游戏的明明的同学数, N N N是其中始终说谎的人数, P P P是证言的总数。

接下来 M M M行,每行是明明的一个同学的名字(英文字母组成,没有空格,全部大写)。

往后有 P P P行,每行开始是某个同学的名宇,紧跟着一个冒号和一个空格,后面是一句证词,符合前表中所列格式。证词每行不会超过 250 250 250个字符。

输入中不会出现连续的两个空格,而且每行开头和结尾也没有空格。

输出格式

如果你的程序能确定谁是罪犯,则输出他的名字;如果程序判断出不止一个人可能是罪犯,则输出 Cannot Determine;如果程序判断出没有人可能成为罪犯,则输出 Impossible

输入输出样例
输入 #1 复制
3 1 5
MIKE
CHARLES
KATE
MIKE: I am guilty.
MIKE: Today is Sunday.
CHARLES: MIKE is guilty.
KATE: I am guilty.
KATE: How are you??
输出 #1 复制
MIKE

思路

一看就是一道一顿模拟才可以

首先,因为说谎的人有多个,不好枚举;而是罪犯的人只有一个,我们就可以枚举罪犯和他犯案时的时间(星期几)然后判断是否合法

判断合法:

首先,要看这时候每个人是否说过相悖的话,就是两句话不成立,就直接不合法。

然后,有的人啊,既不能判断他说了真话,也不能判断他说了假话,这样不仅可以认为他从头到尾说了假话,也可以认为从头到尾说了真话,所以要特判一下

代码

#include<bits/stdc++.h>
#define maxn 21
#define maxp 101
using namespace std;
int n,m,p,pp;
string name[maxn];
map<string,int> man; 
string Day[8]={
"",
"Today is Monday.",
"Today is Tuesday.",
"Today is Wednesday.",
"Today is Thursday.",
"Today is Friday.",
"Today is Saturday.",
"Today is Sunday."
};
struct zj{
	int who;//谁说的 
	int t;//1:是罪犯,2:不是罪犯,3:星期几 
	int data;//星期几或第几个人 
}e[maxp];
int f[maxn];
bool check(int who,bool x){
	if(f[who]==-1){
		f[who]=x;
		return 1;
	}
	else{
		if(f[who]==x)
			return 1;
		else return 0;//与之前的言论不符
	}
}
bool judge(int who,int day){
	for(int i=1;i<=n;i++)f[i]=-1;
	for(int i=1;i<=pp;i++){
		if(e[i].t==1){
			if(check(e[i].who,e[i].data==who));//分号就是一个空语句,占位用
			else return 0;
		}
		else if(e[i].t==2){
			if(check(e[i].who,e[i].data!=who));
			else return 0;
		}
		else if(e[i].t==3){
			if(check(e[i].who,e[i].data==day));
			else return 0;
		}
	}
	int sum1=0,sum2=0;
	for(int i=1;i<=n;i++){
		if(f[i]==0){
			sum1++;
		}
		else if(f[i]==-1){
			sum2++;
		}
	}
	return sum1<=m&&m<=sum1+sum2;//之前说的特判
}
int main(){
	cin>>n>>m>>p;
	for(int i=1;i<=n;i++){
		cin>>name[i];
		man[name[i]]=i;//map数组把人的名字转换成数字
	}
	for(int i=1;i<=p;i++){
		string who,say;
		cin>>who;
		who=who.substr(0,who.length()-1);//去掉:
		getline(cin,say);
		say=say.substr(1,say.length()-2);//不知道为什么自己这里不用-2而洛谷要-2,可能是洛谷的评测把最后一个换行读进去了吧
		if(say=="I am guilty.")e[++pp]=(zj){man[who],1,man[who]};
		else if(say=="I am not guilty.")e[++pp]=(zj){man[who],2,man[who]};
		else{
			for(int j=1;j<=7;j++){
				if(say==Day[j]){
					e[++pp]=(zj){man[who],3,j};
				}
			}
			for(int j=1;j<=n;j++){
				if(say==name[j]+" is guilty."){
					e[++pp]=(zj){man[who],1,j};
				}
				else if(say==name[j]+" is not guilty."){
					e[++pp]=(zj){man[who],2,j};
				}
			}
		}
	}
	int ans=-1;
	for(int i=1;i<=n;i++){
		for(int j=1;j<=7;j++){
			if(judge(i,j)){
				if(ans!=-1){
					printf("Cannot Determine");
					return 0;
				}
				ans=i;
				break;//防止一个罪犯可能有多重犯罪的时间,所以可能会误判成有多个罪犯,所以要直接下一个人
			}
		}
	}
	if(ans!=-1)cout<<name[ans];
	else printf("Impossible");
	return 0;
}

如果还不懂的在评论区说一下

不行就私信我

谢谢–zhengjun

过河卒是一个典型的动态规划问题。首先,我们将整个棋盘看作一个二维数组,数组的每个元素表示到达该位置的路径数目。然后,我们根据题目给出的条件,逐步更新数组中的元素,直到计算出到达目标位置的路径数目。 具体的题思路如下: 1. 首先,我们可以将马的位置设置为0,表示无法经过该位置。 2. 然后,我们根据马的位置,更新数组中的元素。对于二维数组中的每个位置,我们根据左边和上边的位置来计算到达当前位置的路径数目。具体地,如果左边和上边的位置都可以经过,那么到达当前位置的路径数目就等于左边和上边位置的路径数目之和。如果左边或上边的位置无法经过,那么到达当前位置的路径数目就等于左边或上边位置的路径数目。 3. 最后,我们输出目标位置的路径数目。 下面是洛谷p1002过河卒题C++代码: ```cpp #include <bits/stdc++.h> using namespace std; int main() { long long a[21][21]; int x1, y1, x2, y2; cin >> x1 >> y1 >> x2 >> y2; // 初始化数组,马的位置设置为0 for(int i=0; i<=20; i++) { for(int k=0; k<=20; k++) { a[i][k] = 1; } } a[x2][y2] = 0; // 根据马的位置更新数组中的元素 if(x2 >= 2 && y2 >= 1) a[x2-2][y2-1] = 0; if(x2 >= 1 && y2 >= 2) a[x2-1][y2-2] = 0; if(x2 <= 18 && y2 >= 1) a[x2+2][y2-1] = 0; if(x2 <= 19 && y2 >= 2) a[x2+1][y2-2] = 0; if(x2 >= 2) a[x2-2][y2+1] = 0; if(x2 >= 1) a[x2-1][y2+2] = 0; if(y2 >= 1) a[x2+2][y2-1] = 0; if(y2 >= 2) a[x2+1][y2-2] = 0; // 动态规划计算路径数目 for(int i=1; i<=20; i++) { for(int k=1; k<=20; k++) { if(a[i][k] != 0) { a[i][k] = a[i-1][k] + a[i][k-1]; } } } // 输出目标位置的路径数目 cout << a[x1][y1] << endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A_zjzj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值