洛谷P1061Jam的计数法题解--zhengjun

题目描述

J a m Jam Jam是个喜欢标新立异的科学怪人。他不使用阿拉伯数字计数,而是使用小写英文字母计数,他觉得这样做,会使世界更加丰富多彩。

在他的计数法中,每个数字的位数都是相同的(使用相同个数的字母),英文字母按原先的顺序,排在前面的字母小于排在它后面的字母。我们把这样的“数字”称为 J a m Jam Jam数字。在 J a m Jam Jam数字中,每个字母互不相同,而且从左到右是严格递增的。每次, J a m Jam Jam还指定使用字母的范围,例如,从 2 2 2 10 10 10,表示只能使用 b , c , d , e , f , g , h , i , j {b,c,d,e,f,g,h,i,j} b,c,d,e,f,g,h,i,j这些字母。如果再规定位数为 5 5 5,那么,紧接在 J a m Jam Jam数字bdfij之后的数字应该是bdghi。(如果我们用 U U U V V V依次表示 J a m Jam Jam数字bdfijbdghi,则 U < V U<V U<V,且不存在 J a m Jam Jam数字 P P P,使 U < P < V U<P<V U<P<V)。

你的任务是:对于从文件读入的一个 J a m Jam Jam数字,按顺序输出紧接在后面的 5 5 5 J a m Jam Jam数字,如果后面没有那么多 J a m Jam Jam数字,那么有几个就输出几个。

输入格式

2 2 2行。

1 1 1行为 3 3 3个正整数,用一个空格隔开: s , t , w s,t,w s,t,w (其中 s s s为所使用的最小的字母的序号, t t t为所使用的最大的字母的序号。 w w w为数字的位数,这 3 3 3个数满足: 1 ≤ s < T ≤ 26 , 2 ≤ w ≤ t − s 1≤s<T≤26, 2≤w≤t-s 1s<T26,2wts

2 2 2行为具有 w w w个小写字母的字符串,为一个符合要求的 J a m Jam Jam数字。

所给的数据都是正确的,不必验证。

输出格式

最多为 5 5 5行,为紧接在输入的 J a m Jam Jam数字后面的 5 5 5 J a m Jam Jam数字,如果后面没有那么多 J a m Jam Jam数字,那么有几个就输出几个。每行只输出一个 J a m Jam Jam数字,是由 w w w个小写字母组成的字符串,不要有多余的空格。

输入输出样例
输入 #1 复制
2 10 5
bdfij
输出 #1 复制
bdghi
bdghj
bdgij
bdhij
befgh
说明/提示

N O I P   2006 NOIP\ 2006 NOIP 2006 普及组 第三题

思路

其实就是让我们求 J a m Jam Jam数字的下一个字典序大的 J a m Jam Jam数字。

我们就来模拟一下(样例):

||b|c|d|e|f|g|h|i|j|
|-|-|-|-|-|-|-|-|-|-|-|
|原|1||1||1|||1|1|
|①|1||1|||1|1|1||
|②|1||1|||1|1||1|
|③|1||1|||1||1|1|
|④|1||1||||1|1|1|
|⑤|1|||1|1|1|1|||

我们发现,每一次,就要找到第一个可以向后移的字母,然后将它向后移一位,再把它后面的原来有的几个都一次堆在后面就可以了。

然后,如果没有找到可以向后移的,就直接跳出循环

代码

#include<bits/stdc++.h>
using namespace std;
int s,t,w;
string a;
int f[26];
int main(){
	scanf("%d%d%d",&s,&t,&w);
	s--;t--;
	cin>>a;
	int len=a.length();
	for(int i=0;i<len;i++)f[a[i]-'a']=1;
	for(int l=1;l<=5;l++){
		int k=0,i;
		for(i=t;f[i];i--,k++)f[i]=0;//就是找到第一个空格
		if(k==w)break;//全部都删掉了
		for(;!f[i];i--);//再找到前面一个字母
		k++;
		f[i++]=0;//删掉
		for(int j=i;j<i+k;j++)f[j]=1;//直接堆在这里
		for(int j=s;j<=t;j++)
			if(f[j])
				printf("%c",j+'a');//输出
		printf("\n");
	}
	return 0;
}

谢谢–zhengjun

对于洛谷上的p1036题目,我们可以使用Python来解决。下面是一个可能的解法: ```python def dfs(nums, target, selected_nums, index, k, sum): if k == 0 and sum == target: return 1 if index >= len(nums) or k <= 0 or sum > target: return 0 count = 0 for i in range(index, len(nums)): count += dfs(nums, target, selected_nums + [nums[i]], i + 1, k - 1, sum + nums[i]) return count if __name__ == "__main__": n, k = map(int, input().split()) nums = list(map(int, input().split())) target = int(input()) print(dfs(nums, target, [], 0, k, 0)) ``` 在这个解法中,我们使用了深度优先搜索(DFS)来找到满足要求的数列。通过递归的方式,我们遍历了所有可能的数字组合,并统满足条件的个数。 首先,我们从给定的n和k分别表示数字个数和需要选取的数字个数。然后,我们输入n个数字,并将它们存储在一个列表nums中。接下来,我们输入目标值target。 在dfs函数中,我们通过迭代index来选择数字,并更新选取的数字个数k和当前总和sum。如果k等于0且sum等于target,我们就找到了一个满足条件的组合,返回1。如果index超出了列表长度或者k小于等于0或者sum大于target,说明当前组合不满足要求,返回0。 在循环中,我们不断递归调用dfs函数,将选取的数字添加到selected_nums中,并将index和k更新为下一轮递归所需的值。最终,我们返回所有满足条件的组合个数。 最后,我们在主程序中读入输入,并调用dfs函数,并输出结果。 这是一种可能的解法,但不一定是最优解。你可以根据题目要求和测试数据进行调试和优化。希望能对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A_zjzj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值