题目描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 N N N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 | 附件 |
---|---|
电脑 | 打印机,扫描仪 |
书柜 | 图书 |
书桌 | 台灯,文具 |
工作椅 | 无 |
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有 0 0 0个、 1 1 1个或 2 2 2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的 N N N元。于是,他把每件物品规定了一个重要度,分为 5 5 5等:用整数 1 − 5 1-5 1−5表示,第 5 5 5等最重要。他还从因特网上查到了每件物品的价格(都是 10 10 10元的整数倍)。他希望在不超过 N N N元(可以等于 N N N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第 j j j件物品的价格为 v j v_j vj,重要度为 w j w_j wj,共选中了 k k k件物品,编号依次为 j 1 , j 2 , ⋯ , j k j_1,j_2,\cdots,j_k j1,j2,⋯,jk,则所求的总和为:
v j 1 × w j 1 + v j 2 × w j 2 + … + v j k × w j k v_{j_1} \times w_{j_1}+v_{j_2} \times w_{j_2}+ …+v_{j_k} \times w_{j_k} vj1×wj1+vj2×wj2+…+vjk×wjk。
请你帮助金明设计一个满足要求的购物单。
输入格式
第 1 1 1行,为两个正整数,用一个空格隔开:
N , m N,m N,m(其中 N ( < 32000 ) N(<32000) N(<32000)表示总钱数, m ( < 60 ) m(<60) m(<60)为希望购买物品的个数。) 从第 2 2 2行到第 m + 1 m+1 m+1行,第 j j j行给出了编号为 j − 1 j-1 j−1的物品的基本数据,每行有 3 3 3个非负整数
v , p , q v,p,q v,p,q(其中 v v v表示该物品的价格( v < 10000 v<10000 v<10000),p表示该物品的重要度( 1 − 5 1-5 1−5), q q q表示该物品是主件还是附件。如果 q = 0 q=0 q=0,表示该物品为主件,如果 q > 0 q>0 q>0,表示该物品为附件, q q q是所属主件的编号)
输出格式
一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值( < 200000 <200000 <200000)。
输入输出样例
输入 #1 复制
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
输出 #1 复制
2200
说明/提示
N O I P 2006 NOIP\ 2006 NOIP 2006 提高组 第二题
思路
这是这道题的加强版,题解:洛谷P1060开心的金明题解–zhengnjun
这道题就是在开心的金明
的基础上多了一个条件,买附件的时候一定要买主件,因为一个主件最多有
2
2
2个附件,且附件不会有附件,那么只要自己用一坨的
i
f
if
if语句判断够不够然后就是套状态转移公式。
有以下几种情况:
- 主件都买不了
- 可以买主件
- 可以买主件和一号附件
- 可以买主件和二号附件
- 可以买主件和一号附件和二号附件
这里就直接用滚动数组来 d p dp dp了。
代码
#include<bits/stdc++.h>
using namespace std;
int n,m;
int v[61][4],p[61][4];
int f[32001];
int main(){
scanf("%d%d",&m,&n);
for(int i=1;i<=n;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
if(z==0){
v[i][++v[i][0]]=x;
p[i][++p[i][0]]=x*y;
}
else{
v[z][++v[z][0]]=x;
p[z][++p[z][0]]=x*y;
}
}
for(int i=1;i<=n;i++){
if(!v[i][0])continue;
for(int j=m;j>=v[i][1];j--){
f[j]=max(f[j],f[j-v[i][1]]+p[i][1]);
if(v[i][0]>=2&&j>=v[i][1]+v[i][2])
f[j]=max(f[j],f[j-v[i][1]-v[i][2]]+p[i][1]+p[i][2]);
if(v[i][0]>=3&&j>=v[i][1]+v[i][3])
f[j]=max(f[j],f[j-v[i][1]-v[i][3]]+p[i][1]+p[i][3]);
if(v[i][0]>=3&&j>=v[i][1]+v[i][2]+v[i][3])
f[j]=max(f[j],f[j-v[i][1]-v[i][2]-v[i][3]]+p[i][1]+p[i][2]+p[i][3]);
}
}
printf("%d",f[m]);
return 0;
}