加拿大国赛CCC2014 S5 题解--zhengjun

该博客介绍了如何通过线性动态规划(DP)解决一个寻找最短路径并收集最多点心的问题。作者首先提出可以使用爆搜方法,但效率较低,然后详细阐述了如何构建边,并按照距离排序,转换为线性DP。在DP过程中,通过维护两个额外的数组记录距离和点心数量,以处理距离相等的情况。最终,给出了C++代码实现来找出从起点到任意点的最大点心数。
摘要由CSDN通过智能技术生成

首先,可以爆搜,不过分比较少。

然后,我们可以算出每条边,然后把边按照距离排个序。就可以转换成线性 d p dp dp

f i f_i fi 表示到了第 i i i 条边最多可以拿到几个点心

但是,还有一点要考虑,如果有一坨边的距离都一样,那么应该取走那条边呢。

所以,我们可以另外开一个数组记录一下就可以了

代码

#include<cstdio>
#include<algorithm>
using namespace std;
int n,m,tot,x[2001],y[2001];
struct zj{
    int d,x,y;
    bool operator < (const zj &a)const{
        return d<a.d;
    }
}a[4000001];
int f[2001],fb[2001],fd[2001];
int main(){
    scanf("%d",&n);
    m=n*(n-1)/2;
    for(int i=1;i<=n;i++)scanf("%d%d",&x[i],&y[i]),f[i]=1;
    for(int i=0;i<=n;i++){
        for(int j=i+1;j<=n;j++){
            a[++tot]=(zj){(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]),i,j};
        }
    }
    sort(a+1,a+1+tot);
    for(int i=1;i<=tot;i++){
        int d=a[i].d,u=a[i].x,v=a[i].y;
        if(d!=fd[u]){
            fd[u]=d;
            fb[u]=f[u];
        }
        if(d!=fd[v]){
            fd[v]=d;
            fb[v]=f[v];
        }
        if(u==0){
            f[u]=max(f[u],fb[v]);
        }
        else{
            f[u]=max(f[u],fb[v]+1);
            f[v]=max(f[v],fb[u]+1);
        }
    }
    printf("%d",f[0]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A_zjzj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值