模型训练前的基本性验证(避免训练好久之后才发现模型不能用)

在模型训练前,为了防止出现训练了两天两夜才发现这个模型根本不能用的逆天问题,我们要在训练前对模型进行一个基本的验证,即Sanity Check。

在dataloader定义后

if debug:  # 只用第一个 batch 数据
	train_loader = [next(iter(train_loader))]
	test_loader = [next(iter(test_loader))]

然后在训练前

if debug:  # 一个 batch 只有两个样本
	batch_size = 2
	epoch = 100

如果这种情况下loss都不降低,模型都不过拟合的话,那么代码一定会有问题,需要调试修改。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值