文章目录
更多相关内容可查看
什么是主键生成策略
通过以下代码我们可以很直观的看出,当我们程序并没有set主键的时候,MyBatis-Plus是自动帮我们set了一个19位的id主键,这就体现了MyBatis-Plus的主键生成策略
附git地址:https://gitee.com/its-a-little-bad/mybatisplus—chapter-1.git
主键生成策略的配置方式
Spring-Boot
方式一:使用配置类
@Bean
public IKeyGenerator keyGenerator() {
return new H2KeyGenerator();
}
方式二:通过 MybatisPlusPropertiesCustomizer 自定义
@Bean
public MybatisPlusPropertiesCustomizer plusPropertiesCustomizer() {
return plusProperties -> plusProperties.getGlobalConfig().getDbConfig().setKeyGenerator(new H2KeyGenerator());
}
Spring
方式一: XML 配置
<bean id="globalConfig" class="com.baomidou.mybatisplus.core.config.GlobalConfig">
<property name="dbConfig" ref="dbConfig"/>
</bean>
<bean id="dbConfig" class="com.baomidou.mybatisplus.core.config.GlobalConfig.DbConfig">
<property name="keyGenerator" ref="keyGenerator"/>
</bean>
<bean id="keyGenerator" class="com.baomidou.mybatisplus.extension.incrementer.H2KeyGenerator"/>
方式二:注解配置
@Bean
public GlobalConfig globalConfig() {
GlobalConfig conf = new GlobalConfig();
conf.setDbConfig(new GlobalConfig.DbConfig().setKeyGenerator(new H2KeyGenerator()));
return conf;
}
主键生成策略的实现方式
自动增长策略(AUTO)
/**
* 数据库ID自增
*/
AUTO(0),
最常见的方式:利用数据库,全数据库唯一。
优点:
1)简单,代码方便,性能可以接受。
2)数字ID天然排序,对分页或者需要排序的结果很有帮助。
缺点:
1)不同数据库语法和实现不同,数据库迁移的时候或多数据库版本支持的时候需要处理。
2)在单个数据库或读写分离或一主多从的情况下,只有一个主库可以生成。有单点故障的风险。
3)在性能达不到要求的情况下,比较难于扩展。(不适用于海量高并发)
4)如果遇见多个系统需要合并或者涉及到数据迁移会相当痛苦。
5)分表分库的时候会有麻烦。
6)并非一定连续,类似MySQL,当生成新ID的事务回滚,那么后续的事务也不会再用这个ID了。这个在性能和连续性的折中。如果为了保证连续,必须要在事务结束后才能生成ID,那性能就会出现问题。
7)在分布式数据库中,如果采用了自增主键的话,有可能会带来尾部热点。分布式数据库常常使用range的分区方式,在大量新增记录的时候,IO会集中在一个分区上,造成热点数据。
优化方案:
1)针对主库单点,如果有多个Master库,则每个Master库设置的起始数字不一样,步长一样,可以是Master的个数。比如:Master1生成的是 1,4,7,10,Master2生成的是2,5,8,11 Master3生成的是
3,6,9,12。这样就可以有效生成集群中的唯一ID,也可以大大降低ID生成数据库操作的负载。
全局唯一ID (UUID)
/**
* 全局唯一ID (UUID)
*/
UUID(4),
常见的方式:可以利用数据库也可以利用程序生成,一般来说全球唯一。UUID是由32个的16进制数字组成,所以每个UUID的长度是128位(16^32 = 2^128)。UUID作为一种广泛使用标准,有多个实现版本,影响它的因素包括时间、网卡MAC地址、自定义Namesapce等等。
优点:
1)简单,代码方便。
2)生成ID性能非常好,基本不会有性能问题。
3)全球唯一,在遇见数据迁移,系统数据合并,或者数据库变更等情况下,可以从容应对。
缺点:
1)没有排序,无法保证趋势递增。
2)UUID往往是使用字符串存储,查询的效率比较低。
3)存储空间比较大,如果是海量数据库,就需要考虑存储量的问题。
4)传输数据量大
5)不可读。
深入UUID的变种(了解即可)
//为了解决UUID不可读,可以使用UUID to Int64的方法
public static long GuidToInt64()
{
byte[] bytes = Guid.NewGuid().ToByteArray();
return BitConverter.ToInt64(bytes, 0);
}
//为了解决UUID无序的问题,NHibernate在其主键生成方式中提供了Comb算法(combined guid/timestamp)。保留GUID的10个字节,用另6个字节表示GUID生成的时间(DateTime)
private Guid GenerateComb()
{
byte[] guidArray = Guid.NewGuid().ToByteArray();
DateTime baseDate = new DateTime(1900, 1, 1);
DateTime now = DateTime.Now;
TimeSpan days = new TimeSpan(now.Ticks - baseDate.Ticks);
TimeSpan msecs = now.TimeOfDay;
byte[] daysArray = BitConverter.GetBytes(days.Days);
byte[] msecsArray = BitConverter.GetBytes((long)
(msecs.TotalMilliseconds / 3.333333));
Array.Reverse(daysArray);
Array.Reverse(msecsArray);
Array.Copy(daysArray, daysArray.Length - 2, guidArray,
guidArray.Length - 6, 2);
Array.Copy(msecsArray, msecsArray.Length - 4, guidArray,
guidArray.Length - 4, 4);
return new Guid(guidArray);
}
Redis生成ID
使用场景:当使用数据库来生成ID性能不够要求的时候,我们可以尝试使用Redis来生成ID。这主要依赖于Redis是单线程的,所以也可以用生成全局唯一的ID。可以用Redis的原子操作INCR和INCRBY来实现。
举例:可以使用Redis集群来获取更高的吞吐量。假如一个集群中有5台Redis。可以初始化每台Redis的值分别是1,2,3,4,5,然后步长都是5。各个Redis生成的ID为:
A:1,6,11,16,21
B:2,7,12,17,22
C:3,8,13,18,23
D:4,9,14,19,24
E:5,10,15,20,25
优点:
1)不依赖于数据库,灵活方便,且性能优于数据库。
2)数字ID天然排序,对分页或者需要排序的结果很有帮助。
缺点:
1)如果系统中没有Redis,还需要引入新的组件,增加系统复杂度。
2)需要编码和配置的工作量比较大
MP自带策略(Twitter的snowflake算法)
snowflake是Twitter开源的分布式ID生成算法,结果是一个long型的ID。
核心思想:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的流水号(意味着每个节点在每毫秒可以产生4096 个ID),最后还有一个符号位,永远是0。具体实现的代码可以参看https://github.com/twitter/snowflake。
TPS:雪花算法支持的TPS可以达到419万左右(2^22*1000)。
主键生成策略的源码剖析(IdType类详解)
public enum IdType {
/**
* 数据库ID自增
*/
AUTO(0),
/**
* 该类型为未设置主键类型,如须使用需要手动设置
*/
NONE(1),
/**
* 用户输入ID
* 该类型可以通过自己注册自动填充插件进行填充,如须使用需要手动设置
*/
INPUT(2),
/**
* 全局唯一ID (UUID)
*/
UUID(4),
//以下两种为MP自带策略
/**
* 全局唯一ID (idWorker),生成19位值,数字类型使用这种策略,比如long
*/
ID_WORKER(3),
/**
* 字符串全局唯一ID,生成19位值,字符串类型使用这种策略,比如String
*/
ID_WORKER_STR(5);
}