【论文简述】目标检测:FCOS(2019)

该视频介绍了B站分享的使用FOCS方法进行目标检测的技术,通过proposalfree和anchorfree减少超参数,避免IoU计算,提升模型精度和通用性。关键在于利用金字塔结构解决ambiguity问题,并提及centerness支流的设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B站简介视频:https://www.bilibili.com/video/BV16V411m73M?spm_id_from=333.337.search-card.all.click

FOCS:借用FCN思想来进行目标检测

  1. proposal free + anchor free,减少了超参数的数量。
  2. 避免了IoU的复杂计算
  3. 模型精确度和通用性高。

方法:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

完整架构:主干神经网络+FPN+预测子网络

为什么最后两层没有进行上采样呢?FPN结构在高层的语义特征进行融合效果并不好,所以构建FPN没有必要使用所有的卷积层。但为了尺度的多样性,在其后面加入了P6/P7
在这里插入图片描述

解决ambiguous的方法的核心思想:

由于使用了金字塔结构所以最底层feature_map单元和小的bbox绑定在一起,再往上层feature_map单元和大的bbox绑定在一起。
在这里插入图片描述

centerness支流

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值