bzoj3747【POI2015】Kinoman

3747: [POI2015]Kinoman

Time Limit: 60 Sec   Memory Limit: 128 MB
Submit: 474   Solved: 180
[ Submit][ Status][ Discuss]

Description

共有m部电影,编号为1~m,第i部电影的好看值为w[i]。
在n天之中(从1~n编号)每天会放映一部电影,第i天放映的是第f[i]部。
你可以选择l,r(1<=l<=r<=n),并观看第l,l+1,…,r天内所有的电影。如果同一部电影你观看多于一次,你会感到无聊,于是无法获得这部电影的好看值。所以你希望最大化观看且仅观看过一次的电影的好看值的总和。

Input

第一行两个整数n,m(1<=m<=n<=1000000)。
第二行包含n个整数f[1],f[2],…,f[n](1<=f[i]<=m)。
第三行包含m个整数w[1],w[2],…,w[m](1<=w[j]<=1000000)。

Output

输出观看且仅观看过一次的电影的好看值的总和的最大值。

Sample Input

9 4
2 3 1 1 4 1 2 4 1
5 3 6 6

Sample Output

15
样例解释:
观看第2,3,4,5,6,7天内放映的电影,其中看且仅看过一次的电影的编号为2,3,4。

HINT

Source




做法类似上一道题bzoj3339,线段树维护区间最大值和标记。

每次左端点从i右移到i+1时,将区间[i+1,next[i]-1]减去w[f[i]],再将[next[i],next[next[i]]-1]加上w[f[i]]。

要注意next[i]和next[next[i]]不存在的情况。




#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define LL long long
#define pa pair<int,int>
#define MAXN 1000005
using namespace std;
struct tree_type
{
	int l,r;
	LL w,mx;
}t[MAXN*4];
int n,m,a[MAXN],b[MAXN],cnt[MAXN],nxt[MAXN],last[MAXN];
LL ans=0,f[MAXN];
int read()
{
	int ret=0,flag=1;char ch=getchar();
	while (ch<'0'||ch>'9'){if (ch=='-') flag=-1;ch=getchar();}
	while (ch>='0'&&ch<='9'){ret=ret*10+ch-'0';ch=getchar();}
	return ret*flag;
}
void build(int k,int x,int y)
{
	t[k].l=x;
	t[k].r=y;
	if (x==y)
	{
		t[k].w=f[x];
		t[k].mx=f[x];
		return;
	}
	t[k].w=0;
	int mid=(x+y)>>1;
	build(k<<1,x,mid);
	build(k<<1|1,mid+1,y);
	t[k].mx=max(t[k<<1].mx,t[k<<1|1].mx);
}
void pushdown(int k)
{
	t[k<<1].w+=t[k].w;
	t[k<<1].mx+=t[k].w;
	t[k<<1|1].w+=t[k].w;
	t[k<<1|1].mx+=t[k].w;
	t[k].w=0;
}
void update(int k,int x)
{
	t[k].w+=x;
	t[k].mx+=x;
}
void add(int k,int x,int y,int z)
{
	if (t[k].l==x&&t[k].r==y)
	{
		update(k,z);
		return;
	}
	pushdown(k);
	int mid=(t[k].l+t[k].r)>>1;
	if (mid>=y) add(k<<1,x,y,z);
	else if (mid+1<=x) add(k<<1|1,x,y,z);
	else add(k<<1,x,mid,z),add(k<<1|1,mid+1,y,z);
	t[k].mx=max(t[k<<1].mx,t[k<<1|1].mx);
}
int main()
{
	memset(cnt,0,sizeof(cnt));
	memset(last,0,sizeof(last));
	n=read();m=read();
	F(i,1,n) a[i]=read();
	F(i,1,m) b[i]=read();
	F(i,1,n)
	{
		if (cnt[a[i]]==0) f[i]=f[i-1]+b[a[i]];
		else if (cnt[a[i]]==1) f[i]=f[i-1]-b[a[i]];
		else f[i]=f[i-1];
		cnt[a[i]]++;
	}
	D(i,n,1) nxt[i]=last[a[i]],last[a[i]]=i;
	build(1,1,n);
	F(i,1,n)
	{
		ans=max(ans,t[1].mx);
		int x=nxt[i];
		if (x)
		{
			add(1,i,x-1,-b[a[i]]);
			if (nxt[x]) add(1,x,nxt[x]-1,b[a[i]]);
			else add(1,x,n,b[a[i]]);
		}
		else add(1,i,n,-b[a[i]]);
	}
	printf("%lld\n",ans);
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值