题目描述
给定一个N阶矩阵A,输出A的M次幂(M是非负整数)
例如:
A =
1 2
3 4
A的2次幂
7 10
15 22
输入
第一行是一个正整数N、M(1< =N< =30, 0< =M< =5),表示矩阵A的阶数和要求的幂数
接下来N行,每行N个绝对值不超过10的非负整数,描述矩阵A的值
输出
输出共N行,每行N个整数,表示A的M次幂所对应的矩阵。相邻的数之间用一个空格隔开
样例输入
2 2
1 2
3 4
样例输出
7 10
15 22
java实现:
import java.util.Scanner;
public class Main
{
public static int[][] matrix(int a[][],int b[][]){
int m=a.length;
int n=b[0].length;
int [][]mul=new int[m][n];
for(int i=0;i<m;i++) {
for(int j=0;j<n;j++) {
for(int k=0;k<b.length;k++) {
mul[i][j]+=a[i][k]*b[k][j];
}
}
}
return mul;
}
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int m=sc.nextInt();
int [][]a=new int[n][n];
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++) {
a[i][j]=sc.nextInt();
}
}
int [][]b=new int[n][n];
if(m==0) { //矩阵的零次幂是对应的单位矩阵E(对角线为1,其余为0)
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++) {
if(i==j) {
b[i][j]=1;
}
}
}
}
else {
b=a;
for(int i=0;i<m-1;i++) {
b=matrix(b,a);
}
}
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++) {
if(j!=n-1)
System.out.print(b[i][j]+" ");
else
System.out.print(b[i][j]);
}
System.out.println();
}
}
}