树状结构 - 时间复杂度

树状结构的算法题时间复杂度分析涉及到遍历和分治策略。以LeetCode 109题为例,创建BST的过程类似快速排序,递归时间复杂度为O(NlogN),空间复杂度为O(N)。而预序遍历或DFS虽然看似分治,但时间复杂度实际为O(n),空间复杂度在平衡满二叉树情况下为O(logN)。二分查找树的查找时间复杂度为O(logN),未使用分治。
摘要由CSDN通过智能技术生成

树状结构的算法题时间复杂度是相对比较难的

因为有两种情况,一种是普通遍历,另一种是分治算法

 


 

而如Leetcode109. Convert Sorted List to Binary Search Tree

这题的代码如下

class Solution {
    
    public TreeNode sortedListToBST(ListNode head) {
        if (head == null) return null;
        if (head.next == null) return new TreeNode(head.val);
        ListNode preMid = findPreMid(head);
        ListNode mid = preMid.next;
        preMid.next = null;
        TreeNode node = new TreeNode(mid.val);
        node.left = sortedListToBST(head);
        node.right = sortedListToBST(mid.next);
        return node;
    }
    
    public ListNode findPreMid(ListNode head) {
        ListNode slow = head, fast = head.next, preMid = slow;
        while (fast != null && fast.next != null) {
            preMid = slow;
            slow = slow.next
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值