目录
1. torch.reshape(shape) 和 torch.view(shape)函数用法
2. 当处理的tensor是连续性的(contiguous)
3. 当处理的tensor是非连续性的(contiguous)
在本文开始之前,需要了解最基础的Tensor存储方式,具体见 Tensor数据类型与存储结构
注:如果不想继续往下看,就无脑使用reshape()函数来进行tensor处理!!
1. torch.reshape(shape) 和 torch.view(shape)函数用法
torch.reshape() 和 torch.view()不会修改tensor内部的值,只是对tensor的形状进行变化,里面只包含了shape的参数,shape为当前tensor改变后的形状

示例:将x改变成shape为[2,3] 和 [3,2]的方式,reshape和view均可
x = torch.tensor([1, 2, 3, 4, 5, 6])
y1 = x.reshape(2, 3)
y2 = x.view(3, 2)
print(y1.shape, y2.shape)   # torch.Size([2, 3]) torch.Size([3, 2])
                
                  
                  
                  
                  
本文详细介绍了PyTorch中torch.reshape()和torch.view()函数的使用,包括它们在处理连续性和非连续性tensor时的区别。讨论了contiguous的概念,并指出view()在处理非连续tensor时需要先调用contiguous(),而reshape()则可以直接操作。同时提到了影响tensor连续性的函数,如transpose()、permute()等。
          
最低0.47元/天 解锁文章
                          
                      
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					2980
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            