如何实现对数ln运算?

好朋友Z说他们期末得设计一个计算器,对数ln的运算挺麻烦的。

我想,这不是就是泰勒展开的事吗?

泰勒展开1.0

立刻想到了这个嘛:


然而,跑一下程序的结果是这样的:


1.1 循环的次数多——Peano余项为o(x^n),收敛的速度慢;x越接近2,收敛就越慢。

1.2 当x>1时,增量不收敛,然后答案跑不出来了= =

因为设置的跳出循环的条件为:

       

while(fabs(delta/i)>Epsilon)

        所以这样展开将进入死循环

面对这1.1和1.2两个缺陷,我不由得觉得自己最开始想得太天真。

泰勒展开2.0

教材上的一道例题——提高ln2的求解精度,同时解释了1.0泰勒展开的缺陷:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值