2020-12-26

数字图像处理:噪声添加与逆滤波
博客围绕数字图像处理,介绍湍流模型和运动模糊噪声的添加及逆滤波。在频域添加湍流模型噪声需先进行快速傅里叶正变换,逆滤波时要注意避免除零。还分别阐述了运动模糊的添加及逆滤波操作,并给出相关代码注意事项。

数字图像处理(湍流模型,运动模糊噪声的添加及逆滤波)

1.湍流模型噪声的添加及逆滤波

这里是在频域添加的,就是要先进行(快速)傅里叶正变换得到图像的频域,再在频域添加湍流模型噪声,不会快速傅里叶变换的,可以去我上个博客看看,快速傅里叶变换在我上个博客里有写。废话不多说,直接贴代码。
注意:
1.我这里写的函数的参数名是根据我的快速傅里叶变换的频谱函参数名写的,两者要对应上
2.在逆滤波的时候要注意除以噪声的频域的实部跟虚部不能同时为零,要不然就出现“雪花”图
湍流模型噪声的添加:

std::vector<double>real_1, img_1, pfTurbuMatrix;
void CExImage1View::OnFturbu()
{
	// TODO: 在此添加命令处理程序代码
	OnFuliyekuaiz();
	int iImageWidth = m_Image.GetWidth();
	int iImageHeight = m_Image.GetHeight();
	for (int i = 0; i < iImageWidth * iImageHeight; i++)
	{
		real_1.push_back(0.0);
		img_1.push_back(0.0);
		pfTurbuMatrix.push_back(0.0);
	}
	double fTurbu = 0.0025;


	for (int v = 0; v < iImageHeight; v++)
	{
		for (int u = 0; u < iImageWidth; u++)
		{
			pfTurbuMatrix[(size_t)v * iImageWidth + u] = exp(-fTurbu * pow((pow((double)v -
				iImageHeight / 2.0, 2.0) + pow((double)u - iImageWidth / 2.0, 2.0)), 5.0 / 6.0));
			real_1[(size_t)v * iImageWidth + u] = fRealPart2[(size_t)v * iImageWidth + u] * pfTurbuMatrix[(size_t)v * iImageWidth + u];
			img_1[(size_t)v * iImageWidth + u] = fImgPart2[(size_t)v * iImageWidth + u] * pfTurbuMatrix[(size_t)v * iImageWidth + u];
		}
	}

	for (int v = 0; v < iImageHeight; v++)
	{
		for (int u = 0; u < iImageWidth; u++)
		{
			fRealPart2[(size_t)v * iImageWidth + u] = real_1[(size_t)v * iImageWidth + u];
			fImgPart2[(size_t)v * iImageWidth + u] = img_1[(size_t)v * iImageWidth + u];
		}
	}
	MessageBox(_T("添加湍流噪声,完成"));
	OnFuliyekuaif();
}

湍流模型噪声逆滤波:

void CExImage1View::OnFturbuf()
{
	// TODO: 在此添加命令处理程序代码
	OnFuliyekuaiz();
	int iImageWidth = m_Image.GetWidth();
	int iImageHeight = m_Image.GetHeight();
	real_1.clear();
	img_1.clear();
	for (int i = 0; i < iImageWidth * iImageHeight; i++)
	{
		real_1.push_back(0.0);
		img_1.push_back(0.0);
	}
	double fTurbu = 0.0025;

	for (int v = 0; v < iImageHeight; v++)
	{
		for (int u = 0; u < iImageWidth; u++)
		{
			if ((pow((double)v - iImageHeight / 2.0, 2) + pow((double)u - iImageWidth / 2.0, 2)) < 4900)
			{
				real_1[(size_t)v * iImageWidth + u] = fRealPart2[(size_t)v * iImageWidth + u] / pfTurbuMatrix[(size_t)v * iImageWidth + u];
				img_1[(size_t)v * iImageWidth + u] = fImgPart2[(size_t)v * iImageWidth + u] / pfTurbuMatrix[(size_t)v * iImageWidth + u];
			}
		}
	}
	for (int v = 0; v < iImageHeight; v++)
	{
		for (int u = 0; u < iImageWidth; u++)
		{
			fRealPart2[(size_t)v * iImageWidth + u] = real_1[(size_t)v * iImageWidth + u];
			fImgPart2[(size_t)v * iImageWidth + u] = img_1[(size_t)v * iImageWidth + u];
		}
	}
	MessageBox(_T("湍流噪声逆滤波,完成"));
	OnFuliyekuaif();
}

2.运动模糊的添加及逆滤波

运动模糊的添加:

std::vector<double>real_2, img_2, Movingreal, Movingimg;
void CExImage1View::OnFmohu()
{
	// TODO: 在此添加命令处理程序代码
	OnFuliyekuaiz();
	//运动估计参数
	int iImageWidth = m_Image.GetWidth();
	int iImageHeight = m_Image.GetHeight();

	for (int i = 0; i < iImageWidth * iImageHeight; i++)
	{
		Movingreal.push_back(0.0);
		Movingimg.push_back(0.0);
	}
	double fA, fB, fT;
	fA = 0.1;
	fB = 0.1;
	fT = 1.0;
	for (int i = 0; i < iImageWidth * iImageHeight; i++)
	{
		real_2.push_back(0.0);
		img_2.push_back(0.0);

	}
	for (int v = 0; v < iImageHeight; v++)
	{
		for (int u = 0; u < iImageWidth; u++)
		{
			//获取运动估计模型
			double fCenterX = (double)u - iImageWidth / 2.0;
			double fCenterY = (double)v - iImageHeight / 2.0;
			double fScale = PI * (fCenterX * fA + fCenterY * fB);
			if (fScale == 0)
			{
				Movingreal[(size_t)v * iImageWidth + u] = 1.0;
				Movingimg[(size_t)v * iImageWidth + u] = 0;
			}
			else
			{
				Movingreal[(size_t)v * iImageWidth + u] = fT * sin(fScale) / (fScale) * (cos(fScale));
				Movingimg[(size_t)v * iImageWidth + u] = fT * sin(fScale) / (fScale) * (-sin(fScale));
			}
			real_2[(size_t)v * iImageWidth + u] = fRealPart2[(size_t)v * iImageWidth + u] * Movingreal[(size_t)v * iImageWidth + u]
				- fImgPart2[(size_t)v * iImageWidth + u] * Movingimg[(size_t)v * iImageWidth + u];
			img_2[(size_t)v * iImageWidth + u] = fRealPart2[(size_t)v * iImageWidth + u] * Movingimg[(size_t)v * iImageWidth + u]
				+ fImgPart2[(size_t)v * iImageWidth + u] * Movingreal[(size_t)v * iImageWidth + u];
		}
	}
	for (int v = 0; v < iImageHeight; v++)
	{
		for (int u = 0; u < iImageWidth; u++)
		{
			fRealPart2[(size_t)v * iImageWidth + u] = real_2[(size_t)v * iImageWidth + u];
			fImgPart2[(size_t)v * iImageWidth + u] = img_2[(size_t)v * iImageWidth + u];
		}
	}
	MessageBox(_T("添加运动模糊,完成"));
	OnFuliyekuaif();
}

运动模糊逆滤波:

void CExImage1View::OnFmohuf()
{
	// TODO: 在此添加命令处理程序代码
	OnFuliyekuaiz();
	int iImageWidth = m_Image.GetWidth();
	int iImageHeight = m_Image.GetHeight();
	std::vector<double>real_3, img_3, Movingreal1, Movingimg1;
	for (int i = 0; i < iImageWidth * iImageHeight; i++)
	{
		real_3.push_back(0.0);
		img_3.push_back(0.0);
		Movingreal1.push_back(0.0);
		Movingimg1.push_back(0.0);
	}
	double fA, fB, fT;
	fA = 0.1;
	fB = 0.1;
	fT = 1.0;
	for (int v = 0; v < iImageHeight; v++)
	{
		for (int u = 0; u < iImageWidth; u++)
		{
			//获取运动估计模型
			double fCenterX = (double)u - iImageWidth / 2.0;
			double fCenterY = (double)v - iImageHeight / 2.0;
			double fScale = PI * (fCenterX * fA + fCenterY * fB);
			if ((pow((double)v - iImageHeight / 2.0, 2) + pow((double)u - iImageWidth / 2.0, 2)) < 4900)
			{
				if (fScale == 0)
				{
					Movingreal1[(size_t)v * iImageWidth + u] = fT;
					Movingimg1[(size_t)v * iImageWidth + u] = 0;
				}
				else
				{
					Movingreal1[(size_t)v * iImageWidth + u] = fT * sin(fScale) / (fScale) * (cos(fScale));
					Movingimg1[(size_t)v * iImageWidth + u] = -fT * sin(fScale) / (fScale) * (-sin(fScale));
					if (sqrt(pow(Movingreal1[(size_t)v * iImageWidth + u], 2) + pow(Movingimg1[(size_t)v * iImageWidth + u], 2)) < 0.001)
					{
						Movingreal1[(size_t)v * iImageWidth + u] = 1.0;
						Movingimg1[(size_t)v * iImageWidth + u] = 0;
					}
				}

				real_3[(size_t)v * iImageWidth + u] = (fRealPart2[(size_t)v * iImageWidth + u] * Movingreal1[(size_t)v * iImageWidth + u]
					- fImgPart2[(size_t)v * iImageWidth + u] * Movingimg1[(size_t)v * iImageWidth + u]) / (double)(pow(Movingreal1[(size_t)v * iImageWidth + u], 2)
						+ pow(Movingimg1[(size_t)v * iImageWidth + u], 2));
				img_3[(size_t)v * iImageWidth + u] = (fRealPart2[(size_t)v * iImageWidth + u] * Movingimg1[(size_t)v * iImageWidth + u]
					+ fImgPart2[(size_t)v * iImageWidth + u] * Movingreal1[(size_t)v * iImageWidth + u]) / (double)(pow(Movingreal1[(size_t)v * iImageWidth + u], 2)
						+ pow(Movingimg1[(size_t)v * iImageWidth + u], 2));
				fRealPart2[(size_t)v * iImageWidth + u] = real_3[(size_t)v * iImageWidth + u];
				fImgPart2[(size_t)v * iImageWidth + u] = img_3[(size_t)v * iImageWidth + u];
			}
		}
	}
	MessageBox(_T("运动模糊逆滤波,完成"));
	OnFuliyekuaif();
}
感谢你提供的列名信息,我们可以看到: - `"...1"`:可能是 Excel 中第一列无标题的自动命名(比如行号或空列),可以忽略。 - `"STATION"`:站点编号 - `"NAME"`:站点名称 - `"LATITUDE"`:纬度 - `"LONGITUDE"`:经度 - `"ELEVATION"`:海拔 - `"statement"`:可能是一个状态或注释字段 - 后续从 `"2020-01-01"` 到 `"2020-01-31"` 是每日风速数据(共31天) --- ### ✅ 目标更新: 你要做的是:**根据给定的 SHP 范围裁剪站点,保留落在该地理范围内的所有站点及其完整的逐日风速数据。** 下面是适配你实际列名的完整 R 语言代码,并处理好坐标、投影和数据结构问题。 ```r # 载所需包 library(sf) library(readxl) library(dplyr) # ------------------- 参数设置 ------------------- excel_file <- "your_wind_station_data.xlsx" # 替换为你的实际文件路径 sheet_name <- "Sheet1" # 替换为你的工作表名 shp_file <- "your_boundary.shp" # 替换为你的SHP文件路径 # ------------------- 步骤1: 读取Excel数据 ------------------- df <- read_excel(excel_file, sheet = sheet_name) # 查看列名确认 names(df) <- make.names(names(df)) # 确保列名是合法的(防止空格等问题) cat("原始列名:\n"); print(names(df)) # ------------------- 步骤2: 提取空间信息并创建sf对象 ------------------- # 使用 LATITUDE 和 LONGITUDE 创建空间点(注意:顺序是 LON, LAT) stations_sf <- st_as_sf(df, coords = c("LONGITUDE", "LATITUDE"), # 经度在前,纬度在后 crs = 4326, # WGS84 地理坐标系 dim = "XY") # ------------------- 步骤3: 读取SHP边界并确保其CRS ------------------- boundary <- st_read(shp_file) # 如果boundary不是投影坐标系(如EPSG:32649),则需要检查并转换 # 假设你知道目标投影是 UTM Zone 49N (EPSG:32649),我们统一到这个坐标系进行空间操作 if (is.na(st_crs(boundary))) { stop("SHP文件没有坐标系信息,请先定义正确的CRS!") } # 将站点数据重投影到与SHP相同的坐标系下进行空间判断 stations_projected <- st_transform(stations_sf, crs = st_crs(boundary)) # ------------------- 步骤4: 空间裁剪 —— 找出在SHP范围内的站点 ------------------- # 使用 st_intersects 或 st_within 进行空间子集提取 # 这里使用 [s,t] 语法:返回落在任意多边形内的站点 stations_clipped <- stations_projected[boundary, , op = st_intersects] # 若你想更严格地要求“完全包含”,可用 st_within,但通常 st_intersects 更通用 # ------------------- 步骤5: 转回原始经纬度并提取属性表格 ------------------- # 将结果转回WGS84以便保留原始经纬度格式输出 stations_wgs84 <- st_transform(stations_clipped, crs = 4326) # 去掉geometry列,恢复为普通data.frame,同时保留原始所有列(包括每日数据) result_df <- st_drop_geometry(stations_wgs84) # 可选:重新排序列,把时间序列放在后面 date_cols <- grep("^\\d{4}-\\d{2}-\\d{2}", names(result_df), value = TRUE) non_date_cols <- setdiff(names(result_df), date_cols) final_df <- select(result_df, c(non_date_cols, date_cols)) # 按逻辑排序 # ------------------- 步骤6: 导出结果 ------------------- write.csv(final_df, "clipped_stations_202001.csv", row.names = FALSE, na = "") cat("共保留了", nrow(final_df), "个站点在SHP范围内。\n") ``` --- ### ✅ 关键说明: | 功能 | 说明 | |------|------| | `coords = c("LONGITUDE", "LATITUDE")` | 必须是 **经度在前,纬度在后**,否则位置错误! | | `crs = 4326` | 表示输入的经纬度使用 WGS84 坐标系 | | `st_transform(...)` | 将点从地理坐标(度)转为投影坐标(米),确保与 SHP 在同一空间参考下比较 | | `st_intersects` | 判断点是否与多边形相交(即落在内部),适用于大多数情况 | | `st_drop_geometry()` | 移除空间结构,得到纯数据框用于导出 | > 💡 输出的 CSV 文件将包含原始所有列,包括 `STATION`, `NAME`, `LATITUDE`, `LONGITUDE`, `ELEVATION`, `statement` 和所有日期列(如 `2020-01-01` 等),仅保留位于 SHP 范围内的站点。 --- ### ✅ 示例输出片段(final_df 头几行): ``` ...1 STATION NAME LATITUDE LONGITUDE ELEVATION statement 2020-01-01 2020-01-02 ... 1 1 101 Beijing 39.90 116.4 50.0 good 3.2 4.1 2 2 102 Tianjin 39.08 117.2 10.0 good 5.0 3.8 ... ``` --- ###
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十八闲客yxg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值