关于快速幂

快速幂

由 于 c p p 中 c m a t h 库 p o w 函 数 是 d o u b l e 型 , d o u b l e 转 i n t 精 度 丢 失 会 有 错 误 , 因 此 采 用 此 算 法 , 时 间 复 杂 度 O ( log ⁡ n ) 由于cpp中cmath库pow函数是double型,double转int精度丢失会有错误,因此采用此算法,\\时间复杂度O(\log n) cppcmathpowdouble,doubleint,,O(logn)

#define ll long long
ll power(ll a, ll n)
{
    ll ans = 1, t = a;
    for (; n; n >>= 1, t *= t)
    	if(n & 1) ans *= t;
    return ans;
}

快速幂取模(二进制)

首 先 证 明 : ( a ∗ b )   m o d   c = [ ( a   m o d   c ) ∗ ( b   m o d   c ) ]   m o d   c 首先证明:(a*b)\ mod\ c=\left[(a\ mod\ c)*(b\ mod\ c)\right]\ mod\ c (ab) mod c=[(a mod c)(b mod c)] mod c
S u p p o s e : a   m o d   c = d , b   m o d   c = e t h e n a = m c + d , b = n c + e S o ( a ∗ b )   m o d   c = ( m c + d ) ∗ ( n c + e )   m o d   c = ( d ⋅ e )   m o d   c Suppose:a\ mod\ c=d,b\ mod\ c=e\\then\quad a=mc+d,b=nc+e\\So\quad(a*b)\ mod\ c=(mc+d)*(nc+e)\ mod\ c=(d\cdot e)\ mod\ c Suppose:a mod c=d,b mod c=ethena=mc+d,b=nc+eSo(ab) mod c=(mc+d)(nc+e) mod c=(de) mod c
结 合 : 结合: :
a ​ b   m o d   c = ( ( a 2 ) b 2 )   m o d   c b ∈ 2 k , k ∈ N a b   m o d   c = ( ( a 2 ) b 2 × a )   m o d   c b ∈ 2 k − 1 , k ∈ N a​^b\ mod\ c=((a^2)^\frac{b}{2})\ mod\ c\quad b\in2k,k\in N\\ a^b\ mod\ c=((a^2)^\frac{b}{2}\times a)\ mod\ c\quad b\in2k-1,k\in N ab mod c=((a2)2b) mod cb2k,kNab mod c=((a2)2b×a) mod cb2k1,kN

#define ll long long
ll mod(ll x, ll n, ll m)
{
    ll ans = 1;
    for (x %= m; n; n >>= 1, x = x * x % m)
    	if (n & 1) ans = (ans % m) * (x % m) % m;
    return ans;
}

十进制快速幂

#include <cstdio>
#include <cstring>
#define ll long long
const int N = 1e4 + 5;
ll a, mod, ans = 1;
char num[N];
 
void reverse(char *s)
{
	char tmp;
	int n = strlen(s);
	for(int i = 0; i < n / 2; ++i){
		tmp = s[i];
		s[i] = s[n - 1 - i];
		s[n - 1 - i] = tmp;
	}
}
 
ll mpow(ll a, ll n, ll mod) {
	ll res;
	for (res = 1; n; n >>= 1, a = a * a % mod)
	  if (n & 1)
	  res = res * a % mod;
	return res;
}

int main ()
{
	scanf("%lld%s%lld", &a, num, &mod);
	ll base = a;
	int len = strlen(num);
	reverse(num);
	for (int i = 0; i < len; ++i) {
		ans = ans * mpow(base, num[i] - '0', mod) % mod;
		base = mpow(base, 10, mod) % mod;
	}
	printf ("%lld\n", ans);
	return 0;
}

指数循环节降幂

对 于 a n s = 2 n   m o d   m , 1 ≤ n ≤ 1 0 100000 , 1 ≤ m ≤ 1 0 6 对于ans=2^n\ mod\ m,1\leq n\leq10^{100000},1\leq m \leq10^6 ans=2n mod m,1n10100000,1m106
可 利 用 降 幂 公 式 : a b   m o d   c = a b   m o d   φ ( c ) + φ ( c ) m o d   c ( b ≥ φ ( c ) ) 可利用降幂公式:a^b\ mod\ c=a^{b\ mod\ \varphi(c)+\varphi(c)}mod\ c\quad(b\geq \varphi(c)) :ab mod c=ab mod φ(c)+φ(c)mod c(bφ(c))

#include <cstdio>
#define ll long long
const int Mod = 1e9 + 7;
const int MAX_N = 1e5 + 5;

ll phi(ll x)
{
	ll ans = x;
	for (int i = 2; i * i <= x; ++i) {
		if(x % i == 0) {
			ans -= ans / i;
			while (x % i == 0) x /= i;
		}
	}
	if(x > 1) ans -= ans / x;
	return ans;
}

ll qpow(ll a, ll n, ll mod)
{
	ll ans = 1;
	for(; n; n >>= 1, a = a * a % mod)
		if(n & 1) ans = ans * a % mod;
	return ans;
}

int main()
{
	char a[MAX_N];
	scanf("%s", a);
	ll eu = phi(mod), tmp = 0;
	for(int i = 0; a[i]; ++i) {
		tmp = (tmp * 10 + a[i] - '0') % eu;
	}
	tmp += eu;
	printf("%lld\n", qpow(2, tmp, Mod));
	return 0;
}

矩阵快速幂

( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮   a n 1 a n 2 ⋯ a n n ) ∗ ( b 11 b 12 ⋯ b 1 n   b 21 b 22 ⋯ b 2 n ⋮ ⋮ ⋱ ⋮   b n 1 b n 2 ⋯ b n n ) = ( c 11 c 12 ⋯ c 1 n   c 21 c 22 ⋯ c 2 n ⋮ ⋮ ⋱ ⋮ c n 1 c n 2 ⋯ c n n ) c i j = ∑ k = 1 n a i k ∗ b k j \begin{pmatrix}a_{11} &amp; a_{12} &amp; \cdots &amp; a_{1n}\\a_{21}&amp;a_{22}&amp;\cdots&amp;a_{2n}\\ \vdots &amp; \vdots &amp; \ddots &amp; \vdots\\ \ a_{n1} &amp; a_{n2} &amp; \cdots &amp; a_{nn}\end{pmatrix}* \begin{pmatrix}b_{11} &amp; b_{12} &amp; \cdots &amp; b_{1n}\\ \ b_{21}&amp;b_{22}&amp;\cdots&amp;b_{2n}\\ \vdots &amp; \vdots &amp; \ddots &amp; \vdots\\ \ b_{n1} &amp; b_{n2} &amp; \cdots &amp; b_{nn}\end{pmatrix}= \begin{pmatrix}c_{11} &amp; c_{12} &amp; \cdots &amp; c_{1n}\\ \ c_{21}&amp;c_{22}&amp;\cdots&amp;c_{2n}\\ \vdots &amp; \vdots &amp; \ddots &amp; \vdots\\c_{n1} &amp; c_{n2} &amp; \cdots &amp; c_{nn}\end{pmatrix}\\c_{ij}=\sum^n_{k=1}a_{ik}*b_{kj} a11a21 an1a12a22an2a1na2nannb11 b21 bn1b12b22bn2b1nb2nbnn=c11 c21cn1c12c22cn2c1nc2ncnncij=k=1naikbkj
则可得递推式: ( 1 ) f n = a f n − 1 + b f n − 2 + c ( a b 1 1 0 0 0 0 1 ) ∗ ( f n − 1 f n − 2 c ) = ( f n f n − 1 c ) (1)f_n=af_{n-1}+bf_{n-2}+c\\ \begin{pmatrix}a&amp;b&amp;1\\1&amp;0&amp;0\\0&amp;0&amp;1\end{pmatrix}*\begin{pmatrix}f_{n-1}\\f_{n-2}\\c\end{pmatrix}=\begin{pmatrix}f_{n}\\f_{n-1}\\c\end{pmatrix} (1)fn=afn1+bfn2+ca10b00101fn1fn2c=fnfn1c ( 2 ) f n = c n − f n − 1 ( − 1 c 0 c ) ∗ ( f n − 1 c n − 1 ) = ( f n c n ) (2)f_n=c^n-f_{n-1}\\ \begin{pmatrix}-1&amp;c\\0&amp;c\end{pmatrix}*\begin{pmatrix}f_{n-1}\\c^{n-1}\end{pmatrix}=\begin{pmatrix}f_{n}\\c^n\end{pmatrix} (2)fn=cnfn1(10cc)(fn1cn1)=(fncn)

typedef vector<int> vec;
typedef vector<vec> mat;
#define ll long long
const int M = 10000;

mat mul(mat &a, mat &b)
{
  mat c(a.size(), vec(b[0].size()));
  for(int i = 0; i < a.size(); ++i) {
      for(int k = 0; k < b.size(); ++k) {
          for(int j = 0; j < b[0].size(); ++j) {
              c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % M;
          }
      }
  }
  return c;
}

mat pow(mat a, int n)
{
  mat b(a.size(), vec(a.size()));
  for(int i = 0; i < a.size(); ++i) {
      b[i][i] = 0;
  }
  while(n) {
      if(n & 1) b = mul(b, a);
      a = mul(a, a);
      n >>= 1;
  }
  return b;
}

POJ3070

#include <iostream>
#include <cstring>
using namespace std;
#define ll long long
#define N 4

struct mat
{
     ll m[N][N];
}t, tmp;

mat mul(mat a, mat b)
{
     mat res;
     memset(res.m, 0, sizeof(res.m));
     for (int i = 0; i < 2; ++i) {
         for (int j = 0; j < 2; ++j) {
             for (int k = 0; k < 2; ++k) {
                 res.m[i][j] = (res.m[i][j] + a.m[i][k] * b.m[k][j]) % 10000;
             }
         }
     }
     return res;
}

mat matpow(mat x, ll n)
{
     mat ans;
     memset(ans.m, 0, sizeof(ans.m));
     for (int i = 0; i < 2; ++i) ans.m[i][i] = 1;
     for (; n; n >>= 1, x = mul(x, x))
     	if(n & 1)  ans = mul(ans, x);
     return ans;
}

int main()
{
     ios::sync_with_stdio(false);
     cin.tie(0);
     ll n;
     while (cin >> n && n + 1){
         t.m[0][0] = 1;
         t.m[0][1] = 1;
         t.m[1][0] = 1;
         t.m[1][1] = 0;
         tmp = matpow(t, n);
         cout << tmp.m[0][1] << '\n';
     }
     return 0;
}

POJ3734

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int MOD = 10007;

struct mat
{
    int m[5][5];
    friend mat operator * (mat a, mat b) {
        mat c;
        memset(c.m, 0, sizeof(c.m));
        for(int i = 0; i < 3; ++i) {
            for(int j = 0; j < 3; ++j) {
                for(int k = 0; k < 3; ++k) {
                    c.m[i][j] = (c.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD;
                }
            }
        }
        return c;
    }
};

int solve(int t)
{
    mat res, a;
    a.m[0][0] = 2, a.m[0][1] = 1, a.m[0][2] = 0;
    a.m[1][0] = 2, a.m[1][1] = 2, a.m[1][2] = 2;
    a.m[2][0] = 0, a.m[2][1] = 1, a.m[2][2] = 2;
    res = a;
    while (t) {
        if(t & 1) res = res * a;
        a = a * a;
        t >>= 1;
    }
    return res.m[0][0];
}

int main()
{
    int t, n;
    scanf("%d", &t);
    while (t--) {
        scanf("%d", &n);
        printf("%d\n", solve(n - 1));
    }
	return 0;
}

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园的建设目标是通过数据整合、全面共享,实现校园内教学、科研、管理、服务流程的数字化、信息化、智能化和多媒体化,以提高资源利用率和管理效率,确保校园安全。 智慧校园的建设思路包括构建统一支撑平台、建立完善管理体系、大数据辅助决策和建设校园智慧环境。通过云架构的数据中心与智慧的学习、办公环境,实现日常教学活动、资源建设情况、学业水平情况的全面统计和分析,为决策提供辅助。此外,智慧校园还涵盖了多媒体教学、智慧录播、电子图书馆、VR教室等多种教学模式,以及校园网络、智慧班牌、校园广播等教务管理功能,旨在提升教学品质和管理水平。 智慧校园的详细方案设计进一步细化了教学、教务、安防和运维等多个方面的应用。例如,在智慧教学领域,通过多媒体教学、智慧录播、电子图书馆等技术,实现教学资源的共享和教学模式的创新。在智慧教务方面,校园网络、考场监控、智慧班牌等系统为校园管理提供了便捷和高效。智慧安防系统包括视频监控、一键报警、阳光厨房等,确保校园安全。智慧运维则通过综合管理平台、设备管理、能效管理和资产管理,实现校园设施的智能化管理。 智慧校园的优势和价值体现在个性化互动的智慧教学、协同高效的校园管理、无处不在的校园学习、全面感知的校园环境和轻松便捷的校园生活等方面。通过智慧校园的建设,可以促进教育资源的均衡化,提高教育质量和管理效率,同时保障校园安全和提升师生的学习体验。 总之,智慧校园解决方案通过整合现代信息技术,如云计算、大数据、物联网和人工智能,为教育行业带来了革命性的变革。它不仅提高了教育的质量和效率,还为师生创造了一个更加安全、便捷和富有智慧的学习与生活环境。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值