- 博客(5)
- 收藏
- 关注
原创 每天一道数学题(2021-7-5)
问题:设 P(x)P(x)P(x) 为 n(n>1)n (n>1)n(n>1) 次整系数多项式,记 P(1)(x)=P(x),P(t+1)(x)=P(P(t)(x))P^{(1)}(x)=P(x),P^{(t+1)}(x)=P(P^{(t)}(x))P(1)(x)=P(x),P(t+1)(x)=P(P(t)(x)). 证明:对任意的正整数 kkk ,方程 P(k)(x)=xP^{(k)}(x)=xP(k)(x)=x 至多有 nnn 个整根.解答:首先容易验证对于 u,v∈Z,u≠
2021-07-06 08:58:42 92
原创 每天一道数学题(2021-07-02)
题目:如图, △ABC\triangle ABC△ABC 的内切圆 ⊙I\odot I⊙I 与三边分别交于点 D,E,FD,E,FD,E,F,直线 EFEFEF 与三角形的外接圆 ⊙O\odot O⊙O 交于点 P,QP,QP,Q,点 MMM 是边 BCBCBC 的中点,点 RRR 是 BC⌢\mathop{BC}\limits^{\frown}BC⌢ 的中点,证明:点 M,IM,IM,I 是 △PQR\triangle PQR△PQR 中的一对等角共轭点。解答:辅助线如图所示,取BAC⌢\ma
2021-07-02 22:55:43 296
原创 每天一道数学题(2021-07-01)
题目:设一映射 fff 将平面上每一直线皆映射成其上一点,并且满足:对于平面上任意一点XXX 和过这点的任意三条直线 l1,l2,l3l_1,l_2,l_3l1,l2,l3 ,都存在过点 X,f(l1),f(l2),f(l3)X,f(l_1),f(l_2),f(l_3)X,f(l1),f(l2),f(l3) 的圆.证明:平面上存在唯一的一个点 PPP,满足对一切过点 PPP 的直线 lll ,均有 f(l)=Pf(l)=Pf(l)=P.解答:依题意,容易得出对于每个点 XXX,存在一
2021-07-02 00:26:07 116
原创 每天一道数学题(2021-06-30)
题目:设 0<x1≤x22≤⋯≤xnn,0≤yn≤yn−1≤⋯≤yn0<x_1\leq \frac{x_2}{2}\leq\cdots\leq\frac{x_n}{n},0\leq y_n\leq y_{n-1}\leq\cdots\leq y_n0<x1≤2x2≤⋯≤nxn,0≤yn≤yn−1≤⋯≤yn ,证明:(∑k=1nxkyk)2≤(∑k=1nyk)(∑k=1n(xk2−14xkxk−1)yk)(\sum^n_{k=1}x_ky_k)^2\leq(\sum^
2021-06-30 22:33:31 114
原创 每天一道数学题(2021-06-29)
问题:设x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,⋯,xn 是一组实数,考虑如下的递推关系:xi0=xi,xik+1=xik+xi+1k2x_i^0=x_i,x_i^{k+1}=\frac{x_i^k+x_{i+1}^k}{2}xi0=xi,xik+1=2xik+xi+1k其中 i=1,2,⋯ ,ni=1,2,\cdots,ni=1,2,⋯,n ,下标按模 nnn 意义理解,证明:limk→+∞xik=1n∑i=1nxi\displaystyle\
2021-06-29 16:50:57 489
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人