-
n n n 个相同的球,放入 k k k 个相同的盒子,盒子不允许为空。
- 设 d p i , j dp_{i,j} dpi,j 为 i i i 个球放入 j j j 个盒子里(允许为空)的方案数。
- 则转移方程为: d p i , j = d p i , j − 1 + d p i − j , j dp_{i,j}=dp_{i,j-1}+dp_{i-j,j} dpi,j=dpi,j−1+dpi−j,j
- 可分为有空盒子以及没有空盒子两种情况:
- 有空盒子: d p i , j − 1 dp_{i,j-1} dpi,j−1(加入一个空盒子)。
- 没有空盒子: d p i − j , j dp_{i-j,j} dpi−j,j(每个盒子放一个,剩下的就是相似子问题
- 答案即为 d p n , k − d p n , k − 1 dp_{n,k}-dp_{n,k-1} dpn,k−dpn,k−1。
可以从集合的角度感性理解一下。
-
n n n 个相同的球,放入 k k k 个相同的盒子,盒子允许为空。
- 状态定义和转移方程见上一条(原理相同)。
- 根据定义,答案即为 d p n , k dp_{n,k} dpn,k。
-
n n n 个相同的球,放入 k k k 个不同的盒子,盒子不允许为空。
- 隔板问题。
- 由于所有球相同,可以把 n n n 个球排成一排,中间有 n − 1 n-1 n−1 个空隙,而需要分成 k k k 份,所以要插入 k − 1 k-1 k−1 个板子把它们隔开。
- 这是经典的隔板问题,方案数为 C n − 1 k − 1 C_{n-1}^{k-1} Cn−1k−1。
-
n n n 个相同的球,放入 k k k 个不同的盒子,盒子允许为空。
- 等价于 n + k n+k n+k 个相同的球,放入 k k k 个不同的盒子,盒子不允许为空的问题。
- 由于盒子不允许为空,所以显然每个盒子里面有 1 1 1 个以上的球。
- 那么把每一个盒子里拿走一个球,总共拿走了 k k k 个球,剩下 n n n 个球。
- 此时可能出现盒子为空的情况,也就是原本要解决的问题。
- 即答案为 C n + k − 1 k − 1 C_{n+k-1}^{k-1} Cn+k−1k−1。
- PS:这种未知转化为已知的思维可以巧妙地解决很多问题。
-
n n n 个不同的球,放入 k k k 个相同的盒子,盒子不允许为空。
OIer 们最喜欢的板子题。- 亿眼鉴定为第二类斯特林数(Stirling 数)。
-
定义:将 n n n 个数划分为 k k k 个非空子集的方案数。
- 这正是本题所求,至于如何求解
自己上网搜(bushi)。 - 感觉看着有点像 DP?我们定义它的值为: S n , k S_{n,k} Sn,k。
- 对于第 n n n 个球,可以新开一个盒子,也可以放在已有盒子。
- 由此写出递推式: S n , k = S n − 1 , k − 1 + S n − 1 , k × k ( 1 ≤ k ≤ n ) S_{n,k}=S_{n-1,k-1}+S_{n-1,k} \times k \ \ (1 \leq k \leq n) Sn,k=Sn−1,k−1+Sn−1,k×k (1≤k≤n)。
- 预处理: S 0 , 0 = 1 , S 0 , i = 0 S_{0,0} = 1, \ S_{0,i} = 0 S0,0=1, S0,i=0
- 根据定义,答案为 S n , k S_{n,k} Sn,k。
-
n n n 个不同的球,放入 k k k 个相同的盒子,盒子允许为空。
- 这不是和上一条是一样的吗?
- 答案显然就是 ∑ i = 1 k S n , k \sum_{i=1}^{k} S_{n,k} ∑i=1kSn,k。
-
n n n 个不同的球,放入 k k k 个不同的盒子,盒子不允许为空。
- 还是一样 awa,只是盒子不同而已。
- 答案显然是 S n , k × k ! S_{n,k} \times k! Sn,k×k!,因为可以换盒子,就乘上一个选盒子方案数。
-
n n n 个不同的球,放入 k k k 个不同的盒子,盒子允许为空。
- 显然对于 n n n 个球,每个都有 k k k 种放置方式。
- 所以答案为 k n k^n kn。
后记
好久没发帖子惹,所以来水一波。