39. 组合总和
回溯三部曲:
- 递归函数参数
这里依然是定义两个全局变量,二维数组result存放结果集,数组path存放符合条件的结果。(这两个变量可以作为函数参数传入)
首先是题目中给出的参数,集合candidates, 和目标值target。
此外我还定义了int型的sum变量来统计单一结果path里的总和,其实这个sum也可以不用,用target做相应的减法就可以了,最后如何target==0就说明找到符合的结果了,但为了代码逻辑清晰,我依然用了sum。
本题还需要startIndex来控制for循环的起始位置。
vector<vector<int>> result; vector<int> path; void backtracking(vector<int>& candidates, int target, int sum, int startIndex)
- 递归终止条件
如果sum > target 直接返回,如果等于就把path加入到result里。
if (sum > target) { return; } if (sum == target) { result.push_back(path); return; }
- 单层搜索的逻辑
依旧是从i = startIndex开始遍历,但是本题是可以无限重复的,所以递归的时候还是从i开始。
for (int i = startIndex; i < candidates.size(); i++) { sum += candidates[i]; path.push_back(candidates[i]); backtracking(candidates, target, sum, i); // 关键点:不用i+1了,表示可以重复读取当前的数 sum -= candidates[i]; // 回溯 path.pop_back(); // 回溯 }
class Solution { private: vector<vector<int>> result; vector<int> path; void backtracking(vector<int>& candidates, int target, int sum, int startIndex) { if (sum > target) { return; } if (sum == target) { result.push_back(path); return; } for (int i = startIndex; i < candidates.size(); i++) { sum += candidates[i]; path.push_back(candidates[i]); backtracking(candidates, target, sum, i); // 不用i+1了,表示可以重复读取当前的数 sum -= candidates[i]; path.pop_back(); } } public: vector<vector<int>> combinationSum(vector<int>& candidates, int target) { result.clear(); path.clear(); backtracking(candidates, target, 0, 0); return result; } };
40.组合总和II
区别:
- 本题candidates 中的每个数字在每个组合中只能使用一次。
- 本题数组candidates的元素是有重复的,而39.组合总和 (opens new window)是无重复元素的数组candidates
本题的难点在于区别2中:集合(数组candidates)有重复元素,但还不能有重复的组合
重复元素有两个类型:树枝上重复和树层上重复。我们要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重。
回溯三部曲:
- 确定递归函数和参数
used数组是用来去重的
vector<vector<int>> result; // 存放组合集合 vector<int> path; // 符合条件的组合 void backtracking(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& used) {
- 确定终止条件
if (sum > target) { // 这个条件其实可以省略 return; } if (sum == target) { result.push_back(path); return; }
- 单层遍历
如果
candidates[i] == candidates[i - 1]
并且used[i - 1] == false
,就说明:前一个树枝,使用了candidates[i - 1],也就是说同一树层使用过candidates[i - 1]。此时for循环里就应该做continue的操作。
for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) { // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过 // used[i - 1] == false,说明同一树层candidates[i - 1]使用过 // 要对同一树层使用过的元素进行跳过 if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) { continue; } sum += candidates[i]; path.push_back(candidates[i]); used[i] = true; backtracking(candidates, target, sum, i + 1, used); // 和39.组合总和的区别1:这里是i+1,每个数字在每个组合中只能使用一次 used[i] = false; sum -= candidates[i]; path.pop_back(); }
class Solution { private: vector<vector<int>> result; vector<int> path; void backtracking(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& used) { if (sum == target) { result.push_back(path); return; } for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) { // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过 // used[i - 1] == false,说明同一树层candidates[i - 1]使用过 // 要对同一树层使用过的元素进行跳过 if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) { continue; } sum += candidates[i]; path.push_back(candidates[i]); used[i] = true; backtracking(candidates, target, sum, i + 1, used); // 和39.组合总和的区别1,这里是i+1,每个数字在每个组合中只能使用一次 used[i] = false; sum -= candidates[i]; path.pop_back(); } } public: vector<vector<int>> combinationSum2(vector<int>& candidates, int target) { vector<bool> used(candidates.size(), false); path.clear(); result.clear(); // 首先把给candidates排序,让其相同的元素都挨在一起。 sort(candidates.begin(), candidates.end()); backtracking(candidates, target, 0, 0, used); return result; } };
131.分割回文串
回文子串是正着读和反着读都一样的字符串。
本题这涉及到两个关键问题:
- 切割问题,有不同的切割方式
- 判断回文
回溯三部曲:
- 确定递归函数和参数
vector<vector<string>> result; vector<string> path; // 放已经回文的子串 void backtracking (const string& s, int startIndex) {
- 终止条件
void backtracking (const string& s, int startIndex) { // 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了 if (startIndex >= s.size()) { result.push_back(path); return; } }
- 单层遍历逻辑
for (int i = startIndex; i < s.size(); i++) { if (isPalindrome(s, startIndex, i)) { // 是回文子串 // 获取[startIndex,i]在s中的子串 string str = s.substr(startIndex, i - startIndex + 1); path.push_back(str); } else { // 如果不是则直接跳过 continue; } backtracking(s, i + 1); // 寻找i+1为起始位置的子串 path.pop_back(); // 回溯过程,弹出本次已经添加的子串 }
注意切割过的位置,不能重复切割,所以,backtracking(s, i + 1); 传入下一层的起始位置为i + 1。
#判断回文子串
最后我们看一下回文子串要如何判断了,判断一个字符串是否是回文。
可以使用双指针法,一个指针从前向后,一个指针从后向前,如果前后指针所指向的元素是相等的,就是回文字符串了
bool isPalindrome(const string& s, int start, int end) { for (int i = start, j = end; i < j; i++, j--) { if (s[i] != s[j]) { return false; } } return true; }
class Solution { private: vector<vector<string>> result; vector<string> path; // 放已经回文的子串 void backtracking (const string& s, int startIndex) { // 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了 if (startIndex >= s.size()) { result.push_back(path); return; } for (int i = startIndex; i < s.size(); i++) { if (isPalindrome(s, startIndex, i)) { // 是回文子串 // 获取[startIndex,i]在s中的子串 string str = s.substr(startIndex, i - startIndex + 1); path.push_back(str); } else { // 不是回文,跳过 continue; } backtracking(s, i + 1); // 寻找i+1为起始位置的子串 path.pop_back(); // 回溯过程,弹出本次已经添加的子串 } } bool isPalindrome(const string& s, int start, int end) { for (int i = start, j = end; i < j; i++, j--) { if (s[i] != s[j]) { return false; } } return true; } public: vector<vector<string>> partition(string s) { result.clear(); path.clear(); backtracking(s, 0); return result; } };